If a, b, c be positive real numbers and $\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where $k=a+b+c$, then $\theta $ equals
A. $\dfrac{\pi }{2}$
B. $\dfrac{\pi }{4}$
C. $\pi $
D. none of these
Answer
Verified
466.8k+ views
Hint: We will solve the given question by considering the terms, $\sqrt{\dfrac{ak}{cb}}$ , ${{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}$ , $\sqrt{\dfrac{ck}{ab}}$ and substituting the value of $k=a+b+c$ in each of them. Then, we will then use the trigonometric identity, ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ . After substituting the values of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$ in the above identity and simplifying further, we will be able to get the value of $\theta $ .
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Complete step by step answer:
In this question, we have been given a, b, c as positive real numbers and an equation,$\theta ={{\tan }^{-1}}\sqrt{\dfrac{ak}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{bk}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{ck}{ab}}$, where the values of $k=a+b+c$. We have been asked to find the value of $\theta $. So, since the value of k is given as, $k=a+b+c$, let us rewrite the given equation by substituting the value of k. So, we have,
$\theta ={{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$.
Now, we will use the trigonometric identity of ${{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left( \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right)$ here. So, we will substitute the value of x as $\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}$, value of y as $\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}$ and the value of z as $\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$. So, substituting them in the equation, we get the right hand side or the RHS of the trigonometric identity as,
${{\tan }^{-1}}\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+{{\tan }^{-1}}\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+{{\tan }^{-1}}\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}$
Now, applying the above mentioned trigonometric identity, we will get the left hand side or the LHS as follows,
${{\tan }^{-1}}\left( \dfrac{\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}+\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}+\sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}}{1-\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}\times \sqrt{\dfrac{b\left( a+b+c \right)}{ca}}-\sqrt{\dfrac{b\left( a+b+c \right)}{ca}}\times \sqrt{\dfrac{c\left( a+b+c \right)}{ab}}-\sqrt{\dfrac{c\left( a+b+c \right)}{ab}\times }\sqrt{\dfrac{a\left( a+b+c \right)}{cb}}} \right)$
On doing further calculations, we get,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \sqrt{\dfrac{a}{cb}}+\sqrt{\dfrac{b}{ca}}+\sqrt{\dfrac{c}{ab}} \right)-\dfrac{\left( a+b+c \right)\sqrt{\left( a+b+c \right)}}{\sqrt{abc}}}{1-\left( \dfrac{a+b+c}{c} \right)-\left( \dfrac{a+b+c}{a} \right)-\left( \dfrac{a+b+c}{b} \right)} \right\}$
Which can be further written as,
${{\tan }^{-1}}\left\{ \dfrac{\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)-\sqrt{a+b+c}\left( \dfrac{a+b+c}{\sqrt{abc}} \right)}{1-\left( a+b+c \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)} \right\}$
On analysing the numerator, we can say that it equals 0, so it can be written as ${{\tan }^{-1}}\left( 0 \right)$.
So, now the equation can be written as,
$\theta ={{\tan }^{-1}}\left( 0 \right)$
We will take tan on both the sides and so, we get,
$\tan \theta =0$
Now, we know that the value of $\tan \pi =0$, so we can say that the value of $\theta =\pi $.
Therefore, the correct answer is option C.
Note:
We can also solve this question by using another trigonometric identity, which is ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. But by using this identity the solution would become tedious, so it is preferable to use the identity given in the solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE