Answer
Verified
499.5k+ views
Hint: use the basic definition of G.P. i.e. if three terms (a, b, c) are in G.P., then, relation between (a, b, c) are ${{b}^{2}}=ac.$
We are given that
${{a}^{x}}={{b}^{y}}={{c}^{z}}...........\left( 1 \right)$
Another information given in the question is that a, b, c are G.P. and hence, we know that, if three terms (a, b, c) in G.P., then can write relation between then as;
$\begin{align}
& {{b}^{2}}=ac \\
& Or \\
& b=\sqrt{ac}........................\left( 2 \right) \\
\end{align}$
Now we can substitute value of ‘b’ from equation (2) to equation (1), we get;
$\begin{align}
& {{a}^{x}}={{\left( \sqrt{ac} \right)}^{y}}={{c}^{z}} \\
& or \\
& {{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}...............\left( 3 \right) \\
\end{align}$
Let us solve the first two terms and second terms individually to get a relation among x, y, z.
Now, from first two terms of equation (3), we get;
${{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}...........\left( 4 \right)$
As we know property of surds that
${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$
Hence, we can simplify equation (4), as
${{a}^{x}}={{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}$
Transferring ${{a}^{\dfrac{y}{2}}}$ to other sides, we get;
$\dfrac{{{a}^{x}}}{{{a}^{\dfrac{y}{2}}}}={{c}^{\dfrac{y}{2}}}................\left( 5 \right)$
Now, using property of surds as
$\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$
Now, equation (5), becomes
${{a}^{x-\dfrac{y}{2}}}={{c}^{\dfrac{y}{2}}}.................\left( 6 \right)$
Now, taking last two terms of equation (3), we get;
${{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}$
Now we can simplify the above relation using ${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$. Hence, above equation can be written as;
$\begin{align}
& {{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}} \\
& {{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}={{c}^{z}} \\
\end{align}$
Transferring ${{c}^{\dfrac{y}{2}}}$ to other sides, we get;
${{a}^{\dfrac{y}{2}}}=\dfrac{{{c}^{z}}}{{{c}^{\dfrac{y}{2}}}}$
Now, using property, $\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$, we can rewrite the given equation as;
${{a}^{\dfrac{y}{2}}}={{c}^{z-\dfrac{y}{2}}}..............\left( 7 \right)$
Now we know the property of surds as,
If \[{{a}^{m}}={{b}^{n}}\], we can transfer power to other side as
\[a={{\left( {{b}^{n}} \right)}^{\dfrac{1}{m}}}\text{ or }a={{b}^{\dfrac{n}{m}}}..............\left( 8 \right)\]
Using the above property of equation (8), with the equation (7), we get equation (7) as
$\begin{align}
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{1}{\left( \dfrac{y}{2} \right)}}} \\
& or \\
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}}}..............\left( 9 \right) \\
\end{align}$
Now putting value of ‘a’ to equation (6) we get;
${{c}^{\left( \left( z-\dfrac{y}{2} \right)\dfrac{2}{y} \right)\left( x-\dfrac{y}{2} \right)}}={{c}^{\dfrac{y}{2}}}..................\left( 10 \right)$
Using the property of surds that if ${{a}^{m}}={{a}^{n}}$ then power should also be equal i.e. m=n.
Therefore, we can write from equation (10),
$\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}\left( x-\dfrac{y}{2} \right)=\dfrac{y}{2}$
On simplifying the above relation, we get
$\begin{align}
& \left( \dfrac{2z-y}{2} \right)\left( \dfrac{2}{y} \right)\left( \dfrac{2x-y}{2} \right)=\dfrac{y}{2} \\
& \left( 2z-y \right)\left( 2x-y \right)={{y}^{2}} \\
\end{align}$
Multiplying (2z – y) and (2x – y), we get
$\begin{align}
& 4xz-2yz-2xy+{{y}^{2}}={{y}^{2}} \\
& 4xz-2yz-2xy=0 \\
\end{align}$
Dividing the whole equation by 2, we get
2xz – yz – xy = 0
Or
xy + yz = 2xz
Dividing, the whole equation by xyz to both sides, we get,
$\begin{align}
& \dfrac{xy}{xyz}+\dfrac{yz}{xyz}=\dfrac{2xz}{xyz} \\
& \dfrac{1}{z}+\dfrac{1}{x}=\dfrac{2}{y} \\
\end{align}$
As we know that if three numbers x, y, z are in HP, then $\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}$as written in above equation.
Hence, it is proved that x, y, z are in H.P.
Note: One can go wrong while using the property if \[{{a}^{m}}={{c}^{n}}\] then \[a={{c}^{\dfrac{n}{m}}}\].
One can go wrong while transferring m to other side as
If \[{{a}^{m}}={{c}^{n}}\]then \[a={{c}^{\dfrac{n}{m}}}\text{ or }a={{c}^{mn}}\] which are wrong. Hence, be careful while using the above property of surds.
Another approach for this question would be that can take log to equation as,
${{a}^{x}}={{b}^{y}}={{c}^{z}}$
Taking log and using property as
$\log {{m}^{n}}=n\log m$
$\begin{align}
& \log {{a}^{x}}=\log {{b}^{y}}=\log {{c}^{z}} \\
& x\log a=y\log b=z\log c \\
\end{align}$
We know, ${{b}^{2}}=ac$
Taking log to both sides, we get;
$\begin{align}
& \log {{b}^{2}}=\log ac \\
& 2\log b=\log a+\log c \\
\end{align}$
As, we know log ab = log a + log c
Now, using the two equations
$x\log a=y\log b=z\log c\text{ and }2\log b=\log a+\log c,$ find relation between x, y and z.
We are given that
${{a}^{x}}={{b}^{y}}={{c}^{z}}...........\left( 1 \right)$
Another information given in the question is that a, b, c are G.P. and hence, we know that, if three terms (a, b, c) in G.P., then can write relation between then as;
$\begin{align}
& {{b}^{2}}=ac \\
& Or \\
& b=\sqrt{ac}........................\left( 2 \right) \\
\end{align}$
Now we can substitute value of ‘b’ from equation (2) to equation (1), we get;
$\begin{align}
& {{a}^{x}}={{\left( \sqrt{ac} \right)}^{y}}={{c}^{z}} \\
& or \\
& {{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}...............\left( 3 \right) \\
\end{align}$
Let us solve the first two terms and second terms individually to get a relation among x, y, z.
Now, from first two terms of equation (3), we get;
${{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}...........\left( 4 \right)$
As we know property of surds that
${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$
Hence, we can simplify equation (4), as
${{a}^{x}}={{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}$
Transferring ${{a}^{\dfrac{y}{2}}}$ to other sides, we get;
$\dfrac{{{a}^{x}}}{{{a}^{\dfrac{y}{2}}}}={{c}^{\dfrac{y}{2}}}................\left( 5 \right)$
Now, using property of surds as
$\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$
Now, equation (5), becomes
${{a}^{x-\dfrac{y}{2}}}={{c}^{\dfrac{y}{2}}}.................\left( 6 \right)$
Now, taking last two terms of equation (3), we get;
${{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}$
Now we can simplify the above relation using ${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$. Hence, above equation can be written as;
$\begin{align}
& {{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}} \\
& {{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}={{c}^{z}} \\
\end{align}$
Transferring ${{c}^{\dfrac{y}{2}}}$ to other sides, we get;
${{a}^{\dfrac{y}{2}}}=\dfrac{{{c}^{z}}}{{{c}^{\dfrac{y}{2}}}}$
Now, using property, $\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$, we can rewrite the given equation as;
${{a}^{\dfrac{y}{2}}}={{c}^{z-\dfrac{y}{2}}}..............\left( 7 \right)$
Now we know the property of surds as,
If \[{{a}^{m}}={{b}^{n}}\], we can transfer power to other side as
\[a={{\left( {{b}^{n}} \right)}^{\dfrac{1}{m}}}\text{ or }a={{b}^{\dfrac{n}{m}}}..............\left( 8 \right)\]
Using the above property of equation (8), with the equation (7), we get equation (7) as
$\begin{align}
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{1}{\left( \dfrac{y}{2} \right)}}} \\
& or \\
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}}}..............\left( 9 \right) \\
\end{align}$
Now putting value of ‘a’ to equation (6) we get;
${{c}^{\left( \left( z-\dfrac{y}{2} \right)\dfrac{2}{y} \right)\left( x-\dfrac{y}{2} \right)}}={{c}^{\dfrac{y}{2}}}..................\left( 10 \right)$
Using the property of surds that if ${{a}^{m}}={{a}^{n}}$ then power should also be equal i.e. m=n.
Therefore, we can write from equation (10),
$\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}\left( x-\dfrac{y}{2} \right)=\dfrac{y}{2}$
On simplifying the above relation, we get
$\begin{align}
& \left( \dfrac{2z-y}{2} \right)\left( \dfrac{2}{y} \right)\left( \dfrac{2x-y}{2} \right)=\dfrac{y}{2} \\
& \left( 2z-y \right)\left( 2x-y \right)={{y}^{2}} \\
\end{align}$
Multiplying (2z – y) and (2x – y), we get
$\begin{align}
& 4xz-2yz-2xy+{{y}^{2}}={{y}^{2}} \\
& 4xz-2yz-2xy=0 \\
\end{align}$
Dividing the whole equation by 2, we get
2xz – yz – xy = 0
Or
xy + yz = 2xz
Dividing, the whole equation by xyz to both sides, we get,
$\begin{align}
& \dfrac{xy}{xyz}+\dfrac{yz}{xyz}=\dfrac{2xz}{xyz} \\
& \dfrac{1}{z}+\dfrac{1}{x}=\dfrac{2}{y} \\
\end{align}$
As we know that if three numbers x, y, z are in HP, then $\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}$as written in above equation.
Hence, it is proved that x, y, z are in H.P.
Note: One can go wrong while using the property if \[{{a}^{m}}={{c}^{n}}\] then \[a={{c}^{\dfrac{n}{m}}}\].
One can go wrong while transferring m to other side as
If \[{{a}^{m}}={{c}^{n}}\]then \[a={{c}^{\dfrac{n}{m}}}\text{ or }a={{c}^{mn}}\] which are wrong. Hence, be careful while using the above property of surds.
Another approach for this question would be that can take log to equation as,
${{a}^{x}}={{b}^{y}}={{c}^{z}}$
Taking log and using property as
$\log {{m}^{n}}=n\log m$
$\begin{align}
& \log {{a}^{x}}=\log {{b}^{y}}=\log {{c}^{z}} \\
& x\log a=y\log b=z\log c \\
\end{align}$
We know, ${{b}^{2}}=ac$
Taking log to both sides, we get;
$\begin{align}
& \log {{b}^{2}}=\log ac \\
& 2\log b=\log a+\log c \\
\end{align}$
As, we know log ab = log a + log c
Now, using the two equations
$x\log a=y\log b=z\log c\text{ and }2\log b=\log a+\log c,$ find relation between x, y and z.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE