Answer
Verified
501.6k+ views
Hint : Identify the type of matrix then put the value in the given equation to get the value.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Here $diag(a\;\,b\,{\text{ }}c)$ represents diagonal matrix whose diagonal elements are $a,b,c$
Therefore,
$
diag(2\;\, - 5\,{\text{ 9}}) = \left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = A \\
\\
diag(1\;\,1{\text{ - 4}}) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) = B \\
\\
diag( - 6\;\,3{\text{ 4}}) = \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) = C \\
$
We have to find $B + C - 2A$
On putting the values of $A,B,C$ in the above equation we get,
$\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 4}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{ - 6}&0&0 \\
0&3&0 \\
0&0&4
\end{array}} \right) - 2\left( {\begin{array}{*{20}{c}}
2&0&0 \\
0&{ - 5}&0 \\
0&0&9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 9}&0&0 \\
0&{14}&0 \\
0&0&{ - 18}
\end{array}} \right) = diag( - 9\,\,14\,\, - 18)$
So the required value is $diag( - 9\,\,14\,\, - 18)$ which is a diagonal matrix of diagonal elements $ - 9,\,\,14,\,\, - 18$.
Note :- To solve these types of problems we have to remember that $diag(a\;\,b\,{\text{ }}c)$ represents diagonal elements whose diagonal elements are $a,b,c$. Then after converting it to matrix format we have to put the value of matrix and then apply the rules of calculation in matrices.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE