Answer
Verified
500.7k+ views
Hint- By the data provided in the question we can easily form a triangle and implementation of trigonometric ratios to this triangle will help to reach the answer.
Let us take the angle of elevation made by the point B on the ground with the sun as x degree.
Now length of shadow that is AB =$2\sqrt 3 m$, given in question.
The length of tower AC =6m, given in question.
$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$……………………………….. (1)
Now in $\vartriangle ABC$
Using equation (1) we can say that
$\operatorname{Tan} x = \dfrac{{AC}}{{AB}} = \dfrac{6}{{2\sqrt 3 }} = \dfrac{3}{{\sqrt 3 }}$
Now let’s rationalize the denominator part by multiplying $\sqrt 3 $ in both the numerator and denominator part.
$\tan x = \dfrac{3}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 3 }}{3} = \sqrt 3 $
Now
$
\tan x = \sqrt 3 \\
\Rightarrow x = {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3} = {60^0} \\
$
Hence the required angle is 60 degrees.
Note- Whenever we come across this type of question the basic concept that we need to recall is that of trigonometric ratios, example$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$, similarly all other trigonometric ratios have a default implementation formula. Having a good grasp over them helps to reach the right answer.
Let us take the angle of elevation made by the point B on the ground with the sun as x degree.
Now length of shadow that is AB =$2\sqrt 3 m$, given in question.
The length of tower AC =6m, given in question.
$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$……………………………….. (1)
Now in $\vartriangle ABC$
Using equation (1) we can say that
$\operatorname{Tan} x = \dfrac{{AC}}{{AB}} = \dfrac{6}{{2\sqrt 3 }} = \dfrac{3}{{\sqrt 3 }}$
Now let’s rationalize the denominator part by multiplying $\sqrt 3 $ in both the numerator and denominator part.
$\tan x = \dfrac{3}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 3 }}{3} = \sqrt 3 $
Now
$
\tan x = \sqrt 3 \\
\Rightarrow x = {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3} = {60^0} \\
$
Hence the required angle is 60 degrees.
Note- Whenever we come across this type of question the basic concept that we need to recall is that of trigonometric ratios, example$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$, similarly all other trigonometric ratios have a default implementation formula. Having a good grasp over them helps to reach the right answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE