
If A is a matrix of order $m\times n$and B is a matrix such that AB’ and B’A are both defined, then the order of matrix B is
A. $m\times m$
B. $n\times n$
C. $n\times m$
D. $m\times n$
Answer
593.7k+ views
Hint: To solve this question, we have to know the condition for the product of two matrices to exist. The product of 2 matrices A, B which is A$\times $B is defined when the number of columns of the first matrix which is A is equal to the number of rows of the second matrix which is B. Using this property, we can get the rows and columns of the matrix B as required in the question.
Complete step-by-step solution:
In the notation of order of a matrix M of order m$\times $n, m is the number of rows and n is the number of columns. Let C, D be two matrices of orders $a\times b$ and $x\times y$ respectively.
For the product C$\times $D to be defined, we have to apply the condition for the product to be defined which is the number of columns of C is equal to the number of rows of D. Mathematically it is b = x$\to \left( 1 \right)$.
The important point that we have to note here is that there is no condition for the number of rows of first matrix C and the number of columns of second matrix D.
In the question, it is given that the matrix A is ordered m$\times $n. Let the order of B be k$\times $l.
For a matrix A of order x$\times $y, the transpose A’ will be of the order y$\times $x.
Let us consider the first product in the question which is AB’. The order of B’ will be l$\times $k. For AB’ to be defined, from the equation-1, we get that
$\therefore $ l = n$\to \left( 2 \right)$
Let us consider the first product in the question which is B’A. The order of B’ will be l$\times $k. For B’A to be defined, from the equation-1, we get that
$\therefore $ k = m$\to \left( 3 \right)$
From equations- 2 and 3 we get the order of B as m$\times $n.
$\therefore $ The order of matrix B is m$\times $n. The answer is option D.
Note: In the answer, we got the inference that the order of matrix A and B are the same for the condition that AB’ and B’A be defined. So we can infer from this result that for two matrices C and D, the products CD and DC are defined when the conditions D is of the order of transpose of C and vice versa which is C is of the order of transpose of D should be satisfied.
Complete step-by-step solution:
In the notation of order of a matrix M of order m$\times $n, m is the number of rows and n is the number of columns. Let C, D be two matrices of orders $a\times b$ and $x\times y$ respectively.
For the product C$\times $D to be defined, we have to apply the condition for the product to be defined which is the number of columns of C is equal to the number of rows of D. Mathematically it is b = x$\to \left( 1 \right)$.
The important point that we have to note here is that there is no condition for the number of rows of first matrix C and the number of columns of second matrix D.
In the question, it is given that the matrix A is ordered m$\times $n. Let the order of B be k$\times $l.
For a matrix A of order x$\times $y, the transpose A’ will be of the order y$\times $x.
Let us consider the first product in the question which is AB’. The order of B’ will be l$\times $k. For AB’ to be defined, from the equation-1, we get that
$\therefore $ l = n$\to \left( 2 \right)$
Let us consider the first product in the question which is B’A. The order of B’ will be l$\times $k. For B’A to be defined, from the equation-1, we get that
$\therefore $ k = m$\to \left( 3 \right)$
From equations- 2 and 3 we get the order of B as m$\times $n.
$\therefore $ The order of matrix B is m$\times $n. The answer is option D.
Note: In the answer, we got the inference that the order of matrix A and B are the same for the condition that AB’ and B’A be defined. So we can infer from this result that for two matrices C and D, the products CD and DC are defined when the conditions D is of the order of transpose of C and vice versa which is C is of the order of transpose of D should be satisfied.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

