Answer
Verified
431.4k+ views
Hint: Now we are given with a square matrix of order 2. Now we know that the determinant of a order 2 matrix is given by $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)$ hence using this we will get the first equation. Now again calculate the determinant of 3A and simplify. Now substituting the value from the first equation we will get the value of determinant of 3A.
Complete step by step answer:
Now let us first understand matrices and determinants.
Now matrices are nothing but rectangular arrays consisting of rows and columns.
Hence we have a matrix A with m rows and n columns as $A=\left[ \begin{matrix}
{{a}_{1}} & ... & {{a}_{m}} \\
\vdots & \ddots & \vdots \\
{{a}_{n}} & ... & {{a}_{mn}} \\
\end{matrix} \right]$ .
Now if the matrix has an equal number of rows and columns then we say the matrix is a square matrix.
Hence if a matrix has n rows and n columns the order of the matrix is called n or n × n.
For a square matrix we can define determinant.
Determinant is calculated in a very particular manner.
For matrix of order 2 the determinant is given by,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)$ .
Now let us consider a 2 × 2 matrix A such that the determinant of A is – 5.
Hence we have, $\left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)=-5........\left( 1 \right)$
Now consider the matrix 3A.
$3A=\left[ \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right]$
Now let us calculate the determinant of this matrix.
$\begin{align}
& \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=\left( 3{{a}_{11}}3{{a}_{22}}-3{{a}_{21}}3{{a}_{12}} \right) \\
& \Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=\left( 9{{a}_{11}}{{a}_{22}}-9{{a}_{21}}{{a}_{12}} \right) \\
& \Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=9\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right) \\
\end{align}$
Now from equation (1) we get,
$\Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=9\left( -5 \right)=-45$
Hence we get $\left| 3A \right|=-45$.
Note: Now note that we can directly find the value of the determinant of matrix 3A. the determinant is given by ${{3}^{n}}\left| A \right|$ where n is the order of the matrix. In general we have that if r is a scalar and A is a matrix of order n then $\left| rA \right|={{r}^{n}}\left| A \right|$ .
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)$ hence using this we will get the first equation. Now again calculate the determinant of 3A and simplify. Now substituting the value from the first equation we will get the value of determinant of 3A.
Complete step by step answer:
Now let us first understand matrices and determinants.
Now matrices are nothing but rectangular arrays consisting of rows and columns.
Hence we have a matrix A with m rows and n columns as $A=\left[ \begin{matrix}
{{a}_{1}} & ... & {{a}_{m}} \\
\vdots & \ddots & \vdots \\
{{a}_{n}} & ... & {{a}_{mn}} \\
\end{matrix} \right]$ .
Now if the matrix has an equal number of rows and columns then we say the matrix is a square matrix.
Hence if a matrix has n rows and n columns the order of the matrix is called n or n × n.
For a square matrix we can define determinant.
Determinant is calculated in a very particular manner.
For matrix of order 2 the determinant is given by,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)$ .
Now let us consider a 2 × 2 matrix A such that the determinant of A is – 5.
Hence we have, $\left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right|=\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right)=-5........\left( 1 \right)$
Now consider the matrix 3A.
$3A=\left[ \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right]$
Now let us calculate the determinant of this matrix.
$\begin{align}
& \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=\left( 3{{a}_{11}}3{{a}_{22}}-3{{a}_{21}}3{{a}_{12}} \right) \\
& \Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=\left( 9{{a}_{11}}{{a}_{22}}-9{{a}_{21}}{{a}_{12}} \right) \\
& \Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=9\left( {{a}_{11}}{{a}_{22}}-{{a}_{21}}{{a}_{12}} \right) \\
\end{align}$
Now from equation (1) we get,
$\Rightarrow \left| \begin{matrix}
3{{a}_{11}} & 3{{a}_{12}} \\
3{{a}_{21}} & 3{{a}_{22}} \\
\end{matrix} \right|=9\left( -5 \right)=-45$
Hence we get $\left| 3A \right|=-45$.
Note: Now note that we can directly find the value of the determinant of matrix 3A. the determinant is given by ${{3}^{n}}\left| A \right|$ where n is the order of the matrix. In general we have that if r is a scalar and A is a matrix of order n then $\left| rA \right|={{r}^{n}}\left| A \right|$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE