Answer
Verified
396k+ views
Hint: Firstly, we have to take the determinant on both the sides of the given equation, $\text{{A}'A}=\text{I}$ . Then, we have to apply the properties of determinant mainly $\left| AB \right|=\left| A \right|\left| B \right|$ and $\left| A \right|=\left| {{A}'} \right|$ . We will use the property that the determinant of the identity matrix is always 1. Now, we have to simplify the resultant equation.
Complete step by step solution:
We are given that $\text{{A}'A}=I$ . Let us take determinants on both sides.
$\Rightarrow \left| {A}'A \right|=\left| I \right|$
We know that if A and B are square matrix of same order, then $\left| AB \right|=\left| A \right|\left| B \right|$ . We also know that determinant of identity matrix is always 1, that is, $\left| I \right|=1$ .Therefore, we can write the above equation as
$\Rightarrow \left| {{A}'} \right|\left| A \right|=1$
We know that for any square matrix, A we can write $\left| A \right|=\left| {{A}'} \right|$ . Therefore, the above equation can be written as
$\Rightarrow \left| A \right|\left| A \right|=1$
We can write the LHS as
$\Rightarrow {{\left| A \right|}^{2}}=1$
Let us take square roots on both sides. We can write the result of this step as
$\Rightarrow \left| A \right|=\pm 1$
Therefore, the value of $\left| \text{A} \right|$ is $\pm 1$ .
Note: Students must be thorough with the properties of determinants. We can only apply the property $\left| AB \right|=\left| A \right|\left| B \right|$ only if A and B are square matrices of the same order. Similarly, we can only apply the property $\left| A \right|=\left| {{A}'} \right|$ if A is a square matrix. Students must never miss to put the $\pm $ sign after finding the square root in the last step. We also represent the transpose of a matrix A as ${{A}^{\text{T}}}$ .
Complete step by step solution:
We are given that $\text{{A}'A}=I$ . Let us take determinants on both sides.
$\Rightarrow \left| {A}'A \right|=\left| I \right|$
We know that if A and B are square matrix of same order, then $\left| AB \right|=\left| A \right|\left| B \right|$ . We also know that determinant of identity matrix is always 1, that is, $\left| I \right|=1$ .Therefore, we can write the above equation as
$\Rightarrow \left| {{A}'} \right|\left| A \right|=1$
We know that for any square matrix, A we can write $\left| A \right|=\left| {{A}'} \right|$ . Therefore, the above equation can be written as
$\Rightarrow \left| A \right|\left| A \right|=1$
We can write the LHS as
$\Rightarrow {{\left| A \right|}^{2}}=1$
Let us take square roots on both sides. We can write the result of this step as
$\Rightarrow \left| A \right|=\pm 1$
Therefore, the value of $\left| \text{A} \right|$ is $\pm 1$ .
Note: Students must be thorough with the properties of determinants. We can only apply the property $\left| AB \right|=\left| A \right|\left| B \right|$ only if A and B are square matrices of the same order. Similarly, we can only apply the property $\left| A \right|=\left| {{A}'} \right|$ if A is a square matrix. Students must never miss to put the $\pm $ sign after finding the square root in the last step. We also represent the transpose of a matrix A as ${{A}^{\text{T}}}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE