Answer
Verified
499.5k+ views
Hint: Use the properties of matrix for solving this problem, also use the property of Idempotent matrix i.e. ‘If ‘X’ is an idempotent matrix then, ${{X}^{2}}=X$’ which will work as a key point is the solution.
We will write the given equation first,
$\therefore {{\left( I-0.4A \right)}^{-1}}=I-\alpha A$
We will multiply both sides by $\left( I-0.4A \right)$ therefore we will get,
$\therefore \left( I-0.4A \right)\times {{\left( I-0.4A \right)}^{-1}}=\left( I-0.4A \right)\times \left( I-\alpha A \right)$……………………………… (1)
To proceed further in the solution we should know the property of matrix which is given below,
Property:
$A\times {{A}^{-1}}=I$
Where, A be any matrix of the order $m\times n$
‘I’ be the identity matrix of the order $m\times n$
If we observe the equation (1) we say that in the term $\left( I-0.4A \right)$ there are some operations performed. As matrix ‘A’ is multiplied by 0.4 therefore it is going to give a matrix at the end and as given in the problem both ‘A’ and ‘I’ have same order therefore the whole term $\left( I-0.4A \right)$is going to give us a matrix at the end.
Therefore if we use the property given above in equation (1) we will get,
$\therefore I=\left( I-0.4A \right)\times \left( I-\alpha A \right)$
Now we are going to multiply the brackets on the right hand side of equation, therefore we will get,
$\therefore I={{I}^{2}}-\alpha \times A\times I-0.4\times A\times I+0.4\times \alpha \times {{A}^{2}}$………………………………………. (2)
To proceed further in the solution we should know the properties of matrix given below,
Properties:
${{I}^{2}}=I$
$A\times I=A$ Provided that the given matrix and identity matrix should have the same order.
By using above properties we can write equation (2) as,
$\therefore I=I-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
By cancelling ‘I’ from both sides we will get,
$\therefore 0=0-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
$\therefore 0=-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
As ‘A’ is an Idempotent matrix therefore we can use the property of Idempotent matrix given below to solve the equation,
Property:
If ‘X’ is an idempotent matrix then, ${{X}^{2}}=X$
By using the above property we can write the above equation as,
$\therefore 0=-\alpha \times A-0.4\times A+0.4\times \alpha \times A$
$\therefore 0=-\alpha \times A+0.4\times \alpha \times A-0.4\times A$
By taking $\alpha \times A$ common we will get,
$\therefore 0=\alpha \times A\left( -1+0.4 \right)-0.4\times A$
Now, A can be cancelled out therefore we can write,
$\therefore 0=\alpha \left( -0.6 \right)-0.4$
By shifting 0.4 on the left hand side of the equation we will get,
$\therefore 0.4=\alpha \left( -0.6 \right)$
\[\therefore \dfrac{0.4}{-0.6}=\alpha \]
\[\therefore \alpha =\dfrac{0.4}{-0.6}\]
\[\therefore \alpha =-\dfrac{4}{6}\]
\[\therefore \alpha =-\dfrac{2}{3}\]
Multiplying by 9 on both sides of the equation we will get,
\[\therefore 9\alpha =9\left( -\dfrac{2}{3} \right)\]
Taking the modulus on both sides of the equation we will get,
\[\therefore |9\alpha |=\left| 9\left( -\dfrac{2}{3} \right) \right|\]
\[\therefore |9\alpha |=\left| -3\times 2 \right|\]
\[\therefore |9\alpha |=\left| -6 \right|\]
If we remove the modulus sign from the right hand side then we will get,
\[\therefore |9\alpha |=6\]
Therefore the value of \[|9\alpha |\] is equal to 6.
Note: Do remember that the value of \[A\times I\] is ‘A’ only when both the matrices have the same orders and if they are of different order then\[A\times I\ne A\]. This might confuse students during exams so always read the conditions carefully.
We will write the given equation first,
$\therefore {{\left( I-0.4A \right)}^{-1}}=I-\alpha A$
We will multiply both sides by $\left( I-0.4A \right)$ therefore we will get,
$\therefore \left( I-0.4A \right)\times {{\left( I-0.4A \right)}^{-1}}=\left( I-0.4A \right)\times \left( I-\alpha A \right)$……………………………… (1)
To proceed further in the solution we should know the property of matrix which is given below,
Property:
$A\times {{A}^{-1}}=I$
Where, A be any matrix of the order $m\times n$
‘I’ be the identity matrix of the order $m\times n$
If we observe the equation (1) we say that in the term $\left( I-0.4A \right)$ there are some operations performed. As matrix ‘A’ is multiplied by 0.4 therefore it is going to give a matrix at the end and as given in the problem both ‘A’ and ‘I’ have same order therefore the whole term $\left( I-0.4A \right)$is going to give us a matrix at the end.
Therefore if we use the property given above in equation (1) we will get,
$\therefore I=\left( I-0.4A \right)\times \left( I-\alpha A \right)$
Now we are going to multiply the brackets on the right hand side of equation, therefore we will get,
$\therefore I={{I}^{2}}-\alpha \times A\times I-0.4\times A\times I+0.4\times \alpha \times {{A}^{2}}$………………………………………. (2)
To proceed further in the solution we should know the properties of matrix given below,
Properties:
${{I}^{2}}=I$
$A\times I=A$ Provided that the given matrix and identity matrix should have the same order.
By using above properties we can write equation (2) as,
$\therefore I=I-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
By cancelling ‘I’ from both sides we will get,
$\therefore 0=0-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
$\therefore 0=-\alpha \times A-0.4\times A+0.4\times \alpha \times {{A}^{2}}$
As ‘A’ is an Idempotent matrix therefore we can use the property of Idempotent matrix given below to solve the equation,
Property:
If ‘X’ is an idempotent matrix then, ${{X}^{2}}=X$
By using the above property we can write the above equation as,
$\therefore 0=-\alpha \times A-0.4\times A+0.4\times \alpha \times A$
$\therefore 0=-\alpha \times A+0.4\times \alpha \times A-0.4\times A$
By taking $\alpha \times A$ common we will get,
$\therefore 0=\alpha \times A\left( -1+0.4 \right)-0.4\times A$
Now, A can be cancelled out therefore we can write,
$\therefore 0=\alpha \left( -0.6 \right)-0.4$
By shifting 0.4 on the left hand side of the equation we will get,
$\therefore 0.4=\alpha \left( -0.6 \right)$
\[\therefore \dfrac{0.4}{-0.6}=\alpha \]
\[\therefore \alpha =\dfrac{0.4}{-0.6}\]
\[\therefore \alpha =-\dfrac{4}{6}\]
\[\therefore \alpha =-\dfrac{2}{3}\]
Multiplying by 9 on both sides of the equation we will get,
\[\therefore 9\alpha =9\left( -\dfrac{2}{3} \right)\]
Taking the modulus on both sides of the equation we will get,
\[\therefore |9\alpha |=\left| 9\left( -\dfrac{2}{3} \right) \right|\]
\[\therefore |9\alpha |=\left| -3\times 2 \right|\]
\[\therefore |9\alpha |=\left| -6 \right|\]
If we remove the modulus sign from the right hand side then we will get,
\[\therefore |9\alpha |=6\]
Therefore the value of \[|9\alpha |\] is equal to 6.
Note: Do remember that the value of \[A\times I\] is ‘A’ only when both the matrices have the same orders and if they are of different order then\[A\times I\ne A\]. This might confuse students during exams so always read the conditions carefully.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE