If a is not a multiple of $\pi $, then show that the function$g\left( x \right)=\csc x$ is differentiable at a and $g'\left( a \right)=-\csc a\cot a$. In general, $g'\left( x \right)=-\csc x\cot x$ for all $x$$\ne $$n\pi $, where $n\in Z$.
Answer
Verified
503.1k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as. If any function $f\left( x \right)$is differentiable at point ‘$c$’ then LHD and RHD should be equal which are given by relation
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE