Answer
Verified
500.7k+ views
Hint- $\left| {3A} \right|$means first A matrix is multiplied with 3 and then it’s determinant is to be found. Evaluate each LHS and RHS separately, to prove.
We have given that $A = \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right]$
Now we show that $\left| {3A} \right| = 27\left| A \right|$
First let’s calculate the LHS part so $3A = 3\left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]$
Now the determinant of 3A that is $\left| {3A} \right|$
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right|$=$\left[ {3\left( {3 \times 12 - 0 \times 6} \right) - 0\left( {0 \times 12 - 0 \times 6} \right) + 3\left( {0 \times 0 - 0 \times 3} \right)} \right]$
On simplifying we get
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right| = 3 \times 36 = 108$………………………………….. (1)
Now we have to find $27\left| A \right|$
That is $27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27\left[ {1 \times \left( {1 \times 4 - 0 \times 2} \right) - 0\left( {0 \times 4 - 0 \times 2} \right) + 1\left( {0 \times 0 - 0 \times 1} \right)} \right]$
On simplifying we get
$27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27 \times 4 = 108$……………………………… (2)
Clearly equation (1) is equal to equation (2) thus we can say that $\left| {3A} \right| = 27\left| A \right|$
Hence proved.
Note- The key concept involved here is that we need to understand the basics of determinant evaluation: the quantity inside the determinant resembles a matrix , if it is multiplied with a scalar then the determinant of that scalar multiplied matrix is to be found. However if a scalar is multiplied with a determinant then simply the product of determinant and scalar number is to be evaluated.
We have given that $A = \left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right]$
Now we show that $\left| {3A} \right| = 27\left| A \right|$
First let’s calculate the LHS part so $3A = 3\left[ {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]$
Now the determinant of 3A that is $\left| {3A} \right|$
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right|$=$\left[ {3\left( {3 \times 12 - 0 \times 6} \right) - 0\left( {0 \times 12 - 0 \times 6} \right) + 3\left( {0 \times 0 - 0 \times 3} \right)} \right]$
On simplifying we get
$\left| {\begin{array}{*{20}{c}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right| = 3 \times 36 = 108$………………………………….. (1)
Now we have to find $27\left| A \right|$
That is $27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27\left[ {1 \times \left( {1 \times 4 - 0 \times 2} \right) - 0\left( {0 \times 4 - 0 \times 2} \right) + 1\left( {0 \times 0 - 0 \times 1} \right)} \right]$
On simplifying we get
$27\left| {\begin{array}{*{20}{c}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right| = 27 \times 4 = 108$……………………………… (2)
Clearly equation (1) is equal to equation (2) thus we can say that $\left| {3A} \right| = 27\left| A \right|$
Hence proved.
Note- The key concept involved here is that we need to understand the basics of determinant evaluation: the quantity inside the determinant resembles a matrix , if it is multiplied with a scalar then the determinant of that scalar multiplied matrix is to be found. However if a scalar is multiplied with a determinant then simply the product of determinant and scalar number is to be evaluated.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE