Answer
Verified
460.5k+ views
Hint:
In order to find the given relation is reflexive, symmetric, or transitive, we first need to understand the definition of the reflexivity, symmetry and transitivity holds for a set. The relation is reflexive if \[\left( {x,x} \right)\] belongs to the relation for all \[x\] belongs to the set. The relation is symmetric if \[\left( {x,y} \right)\] belongs to the relation implies that \[\left( {y,z} \right)\] belongs to the same relation. And the relation is transitive if \[\left( {x,y} \right)\& \left( {y,z} \right)\] belongs to the relation implies that \[\left( {x,z} \right)\] belongs to the same relation.
Complete step by step solution:
The relation R in A is said to be reflexive, if \[\left( {a,a} \right) \in R {\text{ for }} a \in A\].
The relation R in A is said to be symmetric, if \[\left( {a,b} \right) \in R \Rightarrow \left( {b,a} \right) \in R {\text{ for }} a, b \in A\].
The relation R is said to be transitive if \[\left( {x,y} \right) \in R {\text{ and }} \left( {y,z} \right) \in R \Rightarrow \left( {x,z} \right) \in R {\text{ for }}x, y, z \in A\].
As the given set A contains three elements, given as \[A = \left\{ {x,y,z} \right\}\] and the relation \[R\] does not contain \[\left( {z,z} \right)\] and \[z \in A\], so the relation \[R\] is not reflexive.
As \[\left( {z,x} \right)\] belongs to the given relation \[R\] and \[\left( {x,z} \right)\] does not belong to the given relation \[R\]. So by using the definition of symmetry.
So, it can be concluded that the given relation is not symmetric.
As \[\left( {z,x} \right) \& \left( {x,x} \right)\] both belong to the given relation \[R\] and \[\left( {z,x} \right)\] also belong to the given relation\[R\] and \[\left( {z,y} \right) \& \left( {y,y} \right)\] both belong to the given relation \[R\] and \[\left( {z,y} \right)\]also belong to the relation \[R\].
From the above argument it can be concluded that, if \[\left( {x,y} \right)\& \left( {y,z} \right)\] are belong to \[R\] implies that \[\left( {x,z} \right)\] belongs to the relation \[R\], then the relation is transitive.
Therefore, the given relation is transitive.
Hence, the correct option is B.
Note:
A relation is a relationship between sets of values or it is a subset of the Cartesian product. A function is a relation in which there is only one output for each input and a relation is denoted by \[R\] and a function is denoted by \[F\].
In order to find the given relation is reflexive, symmetric, or transitive, we first need to understand the definition of the reflexivity, symmetry and transitivity holds for a set. The relation is reflexive if \[\left( {x,x} \right)\] belongs to the relation for all \[x\] belongs to the set. The relation is symmetric if \[\left( {x,y} \right)\] belongs to the relation implies that \[\left( {y,z} \right)\] belongs to the same relation. And the relation is transitive if \[\left( {x,y} \right)\& \left( {y,z} \right)\] belongs to the relation implies that \[\left( {x,z} \right)\] belongs to the same relation.
Complete step by step solution:
The relation R in A is said to be reflexive, if \[\left( {a,a} \right) \in R {\text{ for }} a \in A\].
The relation R in A is said to be symmetric, if \[\left( {a,b} \right) \in R \Rightarrow \left( {b,a} \right) \in R {\text{ for }} a, b \in A\].
The relation R is said to be transitive if \[\left( {x,y} \right) \in R {\text{ and }} \left( {y,z} \right) \in R \Rightarrow \left( {x,z} \right) \in R {\text{ for }}x, y, z \in A\].
As the given set A contains three elements, given as \[A = \left\{ {x,y,z} \right\}\] and the relation \[R\] does not contain \[\left( {z,z} \right)\] and \[z \in A\], so the relation \[R\] is not reflexive.
As \[\left( {z,x} \right)\] belongs to the given relation \[R\] and \[\left( {x,z} \right)\] does not belong to the given relation \[R\]. So by using the definition of symmetry.
So, it can be concluded that the given relation is not symmetric.
As \[\left( {z,x} \right) \& \left( {x,x} \right)\] both belong to the given relation \[R\] and \[\left( {z,x} \right)\] also belong to the given relation\[R\] and \[\left( {z,y} \right) \& \left( {y,y} \right)\] both belong to the given relation \[R\] and \[\left( {z,y} \right)\]also belong to the relation \[R\].
From the above argument it can be concluded that, if \[\left( {x,y} \right)\& \left( {y,z} \right)\] are belong to \[R\] implies that \[\left( {x,z} \right)\] belongs to the relation \[R\], then the relation is transitive.
Therefore, the given relation is transitive.
Hence, the correct option is B.
Note:
A relation is a relationship between sets of values or it is a subset of the Cartesian product. A function is a relation in which there is only one output for each input and a relation is denoted by \[R\] and a function is denoted by \[F\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE