
If a point P has coordinates $\left( {0, - 2} \right)$ and Q is any point on the circle ${x^2} + {y^2} - 5x - y + 5 = 0$ , then the maximum value of ${\left( {PQ} \right)^2}$ is
A) $8 + 5\sqrt 3 $
B) $\dfrac{{47 + 10\sqrt 6 }}{2}$
C) $14 + 5\sqrt 3 $
D) $\dfrac{{25 + \sqrt 6 }}{2}$
Answer
579.3k+ views
Hint:
Firstly, find a, b and r by simplifying the equation ${x^2} + {y^2} - 5x - y + 5 = 0$ and bringing it to the form $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ .
Then, the coordinates of point Q on the circle are given by $\left( {a + r\cos Q,b + r\sin Q} \right)$.
Finally, for the value of ${\left( {PQ} \right)^2}$ , we will find the distance between the points P and Q using the distance formula ${\left( {PQ} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2}$.
Complete step by step solution:
Here, it is given that Q is any point on the circle ${x^2} + {y^2} - 5x - y + 5 = 0$ .
Now, we will be simplifying the equation of circle by making perfect square polynomials as follows
\[{x^2} - 5x + \dfrac{{25}}{4} - \dfrac{{25}}{4} + {y^2} - y + \dfrac{1}{4} - \dfrac{1}{4} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \left( {\dfrac{{25 + 1}}{4}} \right) + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \dfrac{{26}}{4} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \dfrac{{13}}{2} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \left( {\dfrac{{13 - 10}}{2}} \right) = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} = \dfrac{3}{2}\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} = {\left( {\sqrt {\dfrac{3}{2}} } \right)^2}\]
Thus, by comparing the above equation with $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ , we get center of the circle as $\left( {a,b} \right) = \left( {\dfrac{5}{2},\dfrac{1}{2}} \right)$ and radius $r = \dfrac{{\sqrt 3 }}{2}$ .
Now, coordinates of the point Q can be written as $\left( {a + r\cos Q,b + r\sin Q} \right) = \left( {\dfrac{5}{2} + \dfrac{{\sqrt 3 }}{2}\cos Q,\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}\sin Q} \right)$ .
Also, it is given that a point P has coordinates $\left( {0, - 2} \right)$ .
Now, for ${\left( {PQ} \right)^2}$ , we have to find the distance between the points P and Q, which can be given by
$
{\left( {PQ} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} \\
= {\left( {0 - \dfrac{5}{2} - \sqrt {\dfrac{3}{2}} \cos Q} \right)^2} + {\left( { - 2 - \dfrac{1}{2} - \sqrt {\dfrac{3}{2}} \sin Q} \right)^2} \\
= \dfrac{{25}}{4} + 2\left( {\dfrac{5}{2}} \right)\left( {\sqrt {\dfrac{3}{2}} \cos Q} \right) + \dfrac{3}{4}{\cos ^2}Q + \dfrac{{25}}{4} + 2\left( {\dfrac{5}{2}} \right)\left( {\sqrt {\dfrac{3}{2}} \sin Q} \right) + \dfrac{3}{4}{\sin ^2}Q \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \cos Q + 5\sqrt {\dfrac{3}{2}} \sin Q \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\cos Q + \sin Q} \right) \\
$
Now, for the maximum value of ${\left( {PQ} \right)^2}$ , the values of cosine and sine functions must be equal. So, $\cos Q = \sin Q$ .
$
\cos Q = \sin Q \\
\Rightarrow 1 = \dfrac{{\sin Q}}{{\cos Q}} \\
\Rightarrow \tan Q = 1 \\
\Rightarrow \tan Q = \tan 45^\circ \\
\Rightarrow \angle Q = 45^\circ \\
$
$ \Rightarrow \cos 45^\circ = \sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow {\left( {PQ} \right)^2} = \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}} \right) \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\dfrac{2}{{\sqrt 2 }}} \right) \\
= \dfrac{{28}}{2} + 5\dfrac{{\sqrt 3 }}{{\sqrt 2 }}\left( {\sqrt 2 } \right) \\
= 14 + 5\sqrt 3 \\
\]
So, option (C) is correct.
Note:
The above given question can be solved by the help of the general equation of a circle with a center other than origin and by the help of the distance formula for a two-dimensional line. By drawing the correct figure and using the distance formula, we may get the correct answer.
The general equation of a circle having center at any point is $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ and the distance formula between any two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is ${\left( {AB} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2}$.
Firstly, find a, b and r by simplifying the equation ${x^2} + {y^2} - 5x - y + 5 = 0$ and bringing it to the form $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ .
Then, the coordinates of point Q on the circle are given by $\left( {a + r\cos Q,b + r\sin Q} \right)$.
Finally, for the value of ${\left( {PQ} \right)^2}$ , we will find the distance between the points P and Q using the distance formula ${\left( {PQ} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2}$.
Complete step by step solution:
Here, it is given that Q is any point on the circle ${x^2} + {y^2} - 5x - y + 5 = 0$ .
Now, we will be simplifying the equation of circle by making perfect square polynomials as follows
\[{x^2} - 5x + \dfrac{{25}}{4} - \dfrac{{25}}{4} + {y^2} - y + \dfrac{1}{4} - \dfrac{1}{4} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \left( {\dfrac{{25 + 1}}{4}} \right) + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \dfrac{{26}}{4} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \dfrac{{13}}{2} + 5 = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} - \left( {\dfrac{{13 - 10}}{2}} \right) = 0\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} = \dfrac{3}{2}\]
\[ \Rightarrow {\left( {x - \dfrac{5}{2}} \right)^2} + {\left( {y - \dfrac{1}{2}} \right)^2} = {\left( {\sqrt {\dfrac{3}{2}} } \right)^2}\]
Thus, by comparing the above equation with $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ , we get center of the circle as $\left( {a,b} \right) = \left( {\dfrac{5}{2},\dfrac{1}{2}} \right)$ and radius $r = \dfrac{{\sqrt 3 }}{2}$ .
Now, coordinates of the point Q can be written as $\left( {a + r\cos Q,b + r\sin Q} \right) = \left( {\dfrac{5}{2} + \dfrac{{\sqrt 3 }}{2}\cos Q,\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}\sin Q} \right)$ .
Also, it is given that a point P has coordinates $\left( {0, - 2} \right)$ .
Now, for ${\left( {PQ} \right)^2}$ , we have to find the distance between the points P and Q, which can be given by
$
{\left( {PQ} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} \\
= {\left( {0 - \dfrac{5}{2} - \sqrt {\dfrac{3}{2}} \cos Q} \right)^2} + {\left( { - 2 - \dfrac{1}{2} - \sqrt {\dfrac{3}{2}} \sin Q} \right)^2} \\
= \dfrac{{25}}{4} + 2\left( {\dfrac{5}{2}} \right)\left( {\sqrt {\dfrac{3}{2}} \cos Q} \right) + \dfrac{3}{4}{\cos ^2}Q + \dfrac{{25}}{4} + 2\left( {\dfrac{5}{2}} \right)\left( {\sqrt {\dfrac{3}{2}} \sin Q} \right) + \dfrac{3}{4}{\sin ^2}Q \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \cos Q + 5\sqrt {\dfrac{3}{2}} \sin Q \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\cos Q + \sin Q} \right) \\
$
Now, for the maximum value of ${\left( {PQ} \right)^2}$ , the values of cosine and sine functions must be equal. So, $\cos Q = \sin Q$ .
$
\cos Q = \sin Q \\
\Rightarrow 1 = \dfrac{{\sin Q}}{{\cos Q}} \\
\Rightarrow \tan Q = 1 \\
\Rightarrow \tan Q = \tan 45^\circ \\
\Rightarrow \angle Q = 45^\circ \\
$
$ \Rightarrow \cos 45^\circ = \sin 45^\circ = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow {\left( {PQ} \right)^2} = \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}} \right) \\
= \dfrac{{25}}{2} + \dfrac{3}{2} + 5\sqrt {\dfrac{3}{2}} \left( {\dfrac{2}{{\sqrt 2 }}} \right) \\
= \dfrac{{28}}{2} + 5\dfrac{{\sqrt 3 }}{{\sqrt 2 }}\left( {\sqrt 2 } \right) \\
= 14 + 5\sqrt 3 \\
\]
So, option (C) is correct.
Note:
The above given question can be solved by the help of the general equation of a circle with a center other than origin and by the help of the distance formula for a two-dimensional line. By drawing the correct figure and using the distance formula, we may get the correct answer.
The general equation of a circle having center at any point is $\left( {{x^2} - {a^2}} \right) + \left( {{y^2} - {b^2}} \right) = {r^2}$ and the distance formula between any two points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is ${\left( {AB} \right)^2} = {\left( {{x_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

