Answer
Verified
462k+ views
Hint: Proper fractions are those fractions which have a numerator smaller than the denominator and lowest form is that form of fraction, in which fraction can not be further simplified. Here to find the fraction we will try to get a quadratic equation in terms of \[x\] and further we will solve the quadratic equation for the value of \[x\] and further we will assume whether the fraction is proper or improper.
Complete step-by-step answer:
Let, the fraction be \[x\]. then its reciprocal will be equal to $\dfrac{1}{x}$ as reciprocal of a number is a number which gives 1 on multiplication with that number.
Now, it is given that the difference between proper fraction x and its reciprocal that is $\dfrac{1}{x}$ is equal to $\dfrac{77}{18}$.
So, \[x-\dfrac{1}{x}=\dfrac{77}{18}\]
Multiplying both side by 18,
$\begin{align}
& 18\left( x-\dfrac{1}{x} \right)=\dfrac{77}{18}\cdot 18 \\
& 18\left( \dfrac{{{x}^{2}}-1}{x} \right)=77 \\
& 18\left( {{x}^{2}}-1 \right)=77x \\
\end{align}$
Shifting 77\[x\] from right hand side to left hand side, we get
$18{{x}^{2}}-77x-18=0$ …… ( i )
Now, we have a quadratic equation so we have to find the values of \[x\] using the quadratic formula for roots.
To find the roots of quadratic equation of general form $a{{x}^{2}}+bx+c=0$, the quadratic formula is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Using quadratic formula in equation ( i ), we get
$\begin{align}
& x=\dfrac{-(-77)\pm \sqrt{{{(-77)}^{2}}-4(18)(-18)}}{2\cdot (18)} \\
& x=\dfrac{77\pm \sqrt{5929+1296}}{2\cdot (18)} \\
& x=\dfrac{77\pm \sqrt{7225}}{36} \\
& x=\dfrac{77\pm 85}{36} \\
& x=\dfrac{9}{2},-\dfrac{2}{9} \\
\end{align}$
But, \[x\] cannot be equals to $\dfrac{9}{2}$ as it is not a proper fraction in the lowest terms as the numerator that is 9 is greater than the denominator that is equals to 2.
So, $x=-\dfrac{2}{9}$
Hence, the proper fraction is equals to $x=-\dfrac{9}{2}$ and its reciprocal is equals to $\dfrac{1}{x}=-\dfrac{2}{9}$.
Note: Quadratic equation can be solved by using quadratic formula or by factorising it accordingly. Always remember the value obtained from a quadratic formula is proper fraction itself not its reciprocal and always check if one of the values of \[x\] have a numerator greater than denominator then that fraction is not proper fraction.
Complete step-by-step answer:
Let, the fraction be \[x\]. then its reciprocal will be equal to $\dfrac{1}{x}$ as reciprocal of a number is a number which gives 1 on multiplication with that number.
Now, it is given that the difference between proper fraction x and its reciprocal that is $\dfrac{1}{x}$ is equal to $\dfrac{77}{18}$.
So, \[x-\dfrac{1}{x}=\dfrac{77}{18}\]
Multiplying both side by 18,
$\begin{align}
& 18\left( x-\dfrac{1}{x} \right)=\dfrac{77}{18}\cdot 18 \\
& 18\left( \dfrac{{{x}^{2}}-1}{x} \right)=77 \\
& 18\left( {{x}^{2}}-1 \right)=77x \\
\end{align}$
Shifting 77\[x\] from right hand side to left hand side, we get
$18{{x}^{2}}-77x-18=0$ …… ( i )
Now, we have a quadratic equation so we have to find the values of \[x\] using the quadratic formula for roots.
To find the roots of quadratic equation of general form $a{{x}^{2}}+bx+c=0$, the quadratic formula is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Using quadratic formula in equation ( i ), we get
$\begin{align}
& x=\dfrac{-(-77)\pm \sqrt{{{(-77)}^{2}}-4(18)(-18)}}{2\cdot (18)} \\
& x=\dfrac{77\pm \sqrt{5929+1296}}{2\cdot (18)} \\
& x=\dfrac{77\pm \sqrt{7225}}{36} \\
& x=\dfrac{77\pm 85}{36} \\
& x=\dfrac{9}{2},-\dfrac{2}{9} \\
\end{align}$
But, \[x\] cannot be equals to $\dfrac{9}{2}$ as it is not a proper fraction in the lowest terms as the numerator that is 9 is greater than the denominator that is equals to 2.
So, $x=-\dfrac{2}{9}$
Hence, the proper fraction is equals to $x=-\dfrac{9}{2}$ and its reciprocal is equals to $\dfrac{1}{x}=-\dfrac{2}{9}$.
Note: Quadratic equation can be solved by using quadratic formula or by factorising it accordingly. Always remember the value obtained from a quadratic formula is proper fraction itself not its reciprocal and always check if one of the values of \[x\] have a numerator greater than denominator then that fraction is not proper fraction.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE