Answer
Verified
474.6k+ views
Hint – In this problem let the side of the cube be a unit, if we look at the side view of the diagram in which the sphere is inscribed in a cube, it is clear that the radius of the sphere will be half the side of the cube. Use a direct formula for volume of sphere and cube, to get the required ratio.
Complete step-by-step solution -
As we know that the volume (Vc) of a cube is a side cube.
Let the side of the cube be (a) cm.
So the volume of cube is,
$ \Rightarrow {V_c} = {a^3}$ Cubic units.
Now as we know that the sphere is inscribed in the cube so that the sphere is touching the sides of the cube so the diameter (d) of the sphere is equal to the side of the cube.
$ \Rightarrow d = a$ Unit.
Now as we know radius (r) is half of the diameter.
$ \Rightarrow r = \dfrac{d}{2} = \dfrac{a}{2}$ Unit.
Now we all know that the volume (Vs) of sphere is
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( r \right)^3}$ Cubic units, where r is the radius of the sphere.
Now substitute the value of radius we have,
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{4}{{3 \times 8}}\pi {a^3} = \dfrac{1}{6}\pi {a^3}$ Cubic units.
So the ratio of volume of cube to volume of sphere is
$ \Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{1}{6}\pi {a^3}}} = \dfrac{6}{\pi }$
So this is the required ratio.
Hence option (A) is correct.
Note – Diagrammatic representation of the given information always helps in getting relations between the dimensions of different conic sections. Sphere is the locus of the points in three-dimensional space such that these points are always at a constant distance from a fixed point. This constant distance is called the radius and the constant point is the center of the sphere. The Cube is also a three-dimensional shape either hollow or solid, contained by six equal squares.
Complete step-by-step solution -
As we know that the volume (Vc) of a cube is a side cube.
Let the side of the cube be (a) cm.
So the volume of cube is,
$ \Rightarrow {V_c} = {a^3}$ Cubic units.
Now as we know that the sphere is inscribed in the cube so that the sphere is touching the sides of the cube so the diameter (d) of the sphere is equal to the side of the cube.
$ \Rightarrow d = a$ Unit.
Now as we know radius (r) is half of the diameter.
$ \Rightarrow r = \dfrac{d}{2} = \dfrac{a}{2}$ Unit.
Now we all know that the volume (Vs) of sphere is
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( r \right)^3}$ Cubic units, where r is the radius of the sphere.
Now substitute the value of radius we have,
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{4}{{3 \times 8}}\pi {a^3} = \dfrac{1}{6}\pi {a^3}$ Cubic units.
So the ratio of volume of cube to volume of sphere is
$ \Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{1}{6}\pi {a^3}}} = \dfrac{6}{\pi }$
So this is the required ratio.
Hence option (A) is correct.
Note – Diagrammatic representation of the given information always helps in getting relations between the dimensions of different conic sections. Sphere is the locus of the points in three-dimensional space such that these points are always at a constant distance from a fixed point. This constant distance is called the radius and the constant point is the center of the sphere. The Cube is also a three-dimensional shape either hollow or solid, contained by six equal squares.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE