If a sphere is inscribed in a cube, then the ratio of the volume of the cube to the volume of the sphere will be
$
(a){\text{ 6:}}\pi \\
(b){\text{ }}\pi :6 \\
(c){\text{ 12:}}\pi \\
(d){\text{ }}\pi {\text{:2}} \\
$
Answer
Verified
504k+ views
Hint – In this problem let the side of the cube be a unit, if we look at the side view of the diagram in which the sphere is inscribed in a cube, it is clear that the radius of the sphere will be half the side of the cube. Use a direct formula for volume of sphere and cube, to get the required ratio.
Complete step-by-step solution -
As we know that the volume (Vc) of a cube is a side cube.
Let the side of the cube be (a) cm.
So the volume of cube is,
$ \Rightarrow {V_c} = {a^3}$ Cubic units.
Now as we know that the sphere is inscribed in the cube so that the sphere is touching the sides of the cube so the diameter (d) of the sphere is equal to the side of the cube.
$ \Rightarrow d = a$ Unit.
Now as we know radius (r) is half of the diameter.
$ \Rightarrow r = \dfrac{d}{2} = \dfrac{a}{2}$ Unit.
Now we all know that the volume (Vs) of sphere is
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( r \right)^3}$ Cubic units, where r is the radius of the sphere.
Now substitute the value of radius we have,
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{4}{{3 \times 8}}\pi {a^3} = \dfrac{1}{6}\pi {a^3}$ Cubic units.
So the ratio of volume of cube to volume of sphere is
$ \Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{1}{6}\pi {a^3}}} = \dfrac{6}{\pi }$
So this is the required ratio.
Hence option (A) is correct.
Note – Diagrammatic representation of the given information always helps in getting relations between the dimensions of different conic sections. Sphere is the locus of the points in three-dimensional space such that these points are always at a constant distance from a fixed point. This constant distance is called the radius and the constant point is the center of the sphere. The Cube is also a three-dimensional shape either hollow or solid, contained by six equal squares.
Complete step-by-step solution -
As we know that the volume (Vc) of a cube is a side cube.
Let the side of the cube be (a) cm.
So the volume of cube is,
$ \Rightarrow {V_c} = {a^3}$ Cubic units.
Now as we know that the sphere is inscribed in the cube so that the sphere is touching the sides of the cube so the diameter (d) of the sphere is equal to the side of the cube.
$ \Rightarrow d = a$ Unit.
Now as we know radius (r) is half of the diameter.
$ \Rightarrow r = \dfrac{d}{2} = \dfrac{a}{2}$ Unit.
Now we all know that the volume (Vs) of sphere is
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( r \right)^3}$ Cubic units, where r is the radius of the sphere.
Now substitute the value of radius we have,
$ \Rightarrow {V_s} = \dfrac{4}{3}\pi {\left( {\dfrac{a}{2}} \right)^3} = \dfrac{4}{{3 \times 8}}\pi {a^3} = \dfrac{1}{6}\pi {a^3}$ Cubic units.
So the ratio of volume of cube to volume of sphere is
$ \Rightarrow \dfrac{{{V_c}}}{{{V_s}}} = \dfrac{{{a^3}}}{{\dfrac{1}{6}\pi {a^3}}} = \dfrac{6}{\pi }$
So this is the required ratio.
Hence option (A) is correct.
Note – Diagrammatic representation of the given information always helps in getting relations between the dimensions of different conic sections. Sphere is the locus of the points in three-dimensional space such that these points are always at a constant distance from a fixed point. This constant distance is called the radius and the constant point is the center of the sphere. The Cube is also a three-dimensional shape either hollow or solid, contained by six equal squares.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE