Answer
Verified
503.7k+ views
Hint: - Area of circle is $\pi {r^2}{\text{ sq}}{\text{.units}}$, where r is the radius of the circle.
Let, we assume ABCD is a square inscribed in a circle with center O.
Let the side of the square be $b$.
$ \Rightarrow AB = BC = CD = DA = b$.
Let the radius of the circle be $r$.
$ \Rightarrow OB = OD = r$
As we know area of the circle$ = \pi {r^2}{\text{ sq}}{\text{.units}}$
And the diagonal of the square $\left( {DB} \right)$is passing through the center O.
Which is the diameter of the circle.
$ \Rightarrow BD = 2r$
And we know that the side of a square is perpendicular to each other.
Therefore from figure $\Delta BCD{\text{ }}$makes a right angle triangle so, apply Pythagoras Theorem
$\begin{gathered}
\Rightarrow {\left( {BD} \right)^2} = {\left( {BC} \right)^2} + {\left( {CD} \right)^2} \\
\Rightarrow {\left( {2r} \right)^2} = {b^2} + {b^2} = 2{b^2} \\
\Rightarrow {b^2} = \dfrac{{4{r^2}}}{2} \Rightarrow 2{r^2} \\
\end{gathered} $
As we know area of square is $ = {\left( {{\text{side}}} \right)^2} = {b^2} = 2{r^2}{\text{ sq}}{\text{.units}}$
Now we have to find out the ratio of the areas of the circle and the square.
Therefore required ratio $ = \dfrac{{{\text{Area of circle}}}}{{{\text{Area of square}}}} = \dfrac{{\pi {r^2}{\text{ sq}}{\text{.units}}}}{{{\text{2}}{{\text{r}}^2}{\text{ sq}}{\text{.units}}}} = \dfrac{\pi }{2}$
So, $\dfrac{\pi }{2}$ is the required ratio of the areas.
Note: -In such types of questions the key concept we have to remember is that the diagonal of the square is always passing through the center of the circle, and the sides of square is perpendicular to each other so triangle BCD makes a right angle triangle from this we easily calculate the side of the square, then find out the area of the circle and area of the square, then divide them we will get the required answer.
Let, we assume ABCD is a square inscribed in a circle with center O.
Let the side of the square be $b$.
$ \Rightarrow AB = BC = CD = DA = b$.
Let the radius of the circle be $r$.
$ \Rightarrow OB = OD = r$
As we know area of the circle$ = \pi {r^2}{\text{ sq}}{\text{.units}}$
And the diagonal of the square $\left( {DB} \right)$is passing through the center O.
Which is the diameter of the circle.
$ \Rightarrow BD = 2r$
And we know that the side of a square is perpendicular to each other.
Therefore from figure $\Delta BCD{\text{ }}$makes a right angle triangle so, apply Pythagoras Theorem
$\begin{gathered}
\Rightarrow {\left( {BD} \right)^2} = {\left( {BC} \right)^2} + {\left( {CD} \right)^2} \\
\Rightarrow {\left( {2r} \right)^2} = {b^2} + {b^2} = 2{b^2} \\
\Rightarrow {b^2} = \dfrac{{4{r^2}}}{2} \Rightarrow 2{r^2} \\
\end{gathered} $
As we know area of square is $ = {\left( {{\text{side}}} \right)^2} = {b^2} = 2{r^2}{\text{ sq}}{\text{.units}}$
Now we have to find out the ratio of the areas of the circle and the square.
Therefore required ratio $ = \dfrac{{{\text{Area of circle}}}}{{{\text{Area of square}}}} = \dfrac{{\pi {r^2}{\text{ sq}}{\text{.units}}}}{{{\text{2}}{{\text{r}}^2}{\text{ sq}}{\text{.units}}}} = \dfrac{\pi }{2}$
So, $\dfrac{\pi }{2}$ is the required ratio of the areas.
Note: -In such types of questions the key concept we have to remember is that the diagonal of the square is always passing through the center of the circle, and the sides of square is perpendicular to each other so triangle BCD makes a right angle triangle from this we easily calculate the side of the square, then find out the area of the circle and area of the square, then divide them we will get the required answer.
Recently Updated Pages
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE