"If a transversal intersects two parallel lines, then each pair of interior angles are supplementary". Prove it.
Answer
Verified
382.5k+ views
Hint: Here In this question, we need to prove a given statement. For this, first we need to draw a figure as per given information in question, then use the properties of angles also keep in mind to use the corresponding angles and opposite angles properties of angles, using this information to approach towards the solution of the given problem.
Complete answer:Consider the given statement:
We have to say that "If a transversal intersects two parallel lines, then each pair of interior angles are supplementary".
Let us represent the above statement diagrammatically:
In above diagram lines AB and CD are two parallel lines and EF is a transversal line which intersect both AB and CD line at M and N respectively forming two pairs of interior angles i.e., $$\angle 1$$, $$\angle 3$$ and $$\angle 2$$, $$\angle 4$$.
We need to prove: $$\angle 1 + \angle 3 = {180^ \circ }$$ or $$\angle 2 + \angle 4 = {180^ \circ }$$.
Since ray ND perpendicular on line EF, then$$\angle 3$$ and $$\angle 5$$ are linear pair of angles.
$$\therefore \,\,\,\angle 3 + \angle 5 = {180^ \circ }$$ -----(1)
But line $$AB\parallel CD$$, then $$\angle 1$$ and $$\angle 5$$ are corresponding angles.
$$\therefore \,\,\,\angle 1 = \angle 5$$ -----(2)
Form (1) and (2), we get
$$ \Rightarrow \,\,\,\,\angle 3 + \angle 1 = {180^ \circ }$$ ------(3)
Similarly, ray CN perpendicular on line EF, then $$\angle 2$$ and $$\angle 6$$ are linear pair of angles.
$$\therefore \,\,\,\angle 2 + \angle 6 = {180^ \circ }$$ -----(4)
But line $$AB\parallel CD$$, then $$\angle 4$$ and $$\angle 6$$ are corresponding angles.
$$\therefore \,\,\,\angle 4 = \angle 6$$ -----(5)
Form (4) and (5), we get
$$ \Rightarrow \,\,\,\,\angle 2 + \angle 4 = {180^ \circ }$$ ------(6)
From (3) and (6)
Hence, we can say that "If a transversal intersects two parallel lines, then each pair of interior angles are supplementary".
i.e., $$\angle 1 + \angle 3 = {180^ \circ }$$ or $$\angle 2 + \angle 4 = {180^ \circ }$$.
Note:
For this type of problem, drawing a diagram is more important and it makes proof easy. Remember while identifying the transversal of two lines and corresponding angles we must note that transversal is the line cutting two parallel lines and corresponding angles are angles between lines and transversal on the same side of it.
Complete answer:Consider the given statement:
We have to say that "If a transversal intersects two parallel lines, then each pair of interior angles are supplementary".
Let us represent the above statement diagrammatically:
In above diagram lines AB and CD are two parallel lines and EF is a transversal line which intersect both AB and CD line at M and N respectively forming two pairs of interior angles i.e., $$\angle 1$$, $$\angle 3$$ and $$\angle 2$$, $$\angle 4$$.
We need to prove: $$\angle 1 + \angle 3 = {180^ \circ }$$ or $$\angle 2 + \angle 4 = {180^ \circ }$$.
Since ray ND perpendicular on line EF, then$$\angle 3$$ and $$\angle 5$$ are linear pair of angles.
$$\therefore \,\,\,\angle 3 + \angle 5 = {180^ \circ }$$ -----(1)
But line $$AB\parallel CD$$, then $$\angle 1$$ and $$\angle 5$$ are corresponding angles.
$$\therefore \,\,\,\angle 1 = \angle 5$$ -----(2)
Form (1) and (2), we get
$$ \Rightarrow \,\,\,\,\angle 3 + \angle 1 = {180^ \circ }$$ ------(3)
Similarly, ray CN perpendicular on line EF, then $$\angle 2$$ and $$\angle 6$$ are linear pair of angles.
$$\therefore \,\,\,\angle 2 + \angle 6 = {180^ \circ }$$ -----(4)
But line $$AB\parallel CD$$, then $$\angle 4$$ and $$\angle 6$$ are corresponding angles.
$$\therefore \,\,\,\angle 4 = \angle 6$$ -----(5)
Form (4) and (5), we get
$$ \Rightarrow \,\,\,\,\angle 2 + \angle 4 = {180^ \circ }$$ ------(6)
From (3) and (6)
Hence, we can say that "If a transversal intersects two parallel lines, then each pair of interior angles are supplementary".
i.e., $$\angle 1 + \angle 3 = {180^ \circ }$$ or $$\angle 2 + \angle 4 = {180^ \circ }$$.
Note:
For this type of problem, drawing a diagram is more important and it makes proof easy. Remember while identifying the transversal of two lines and corresponding angles we must note that transversal is the line cutting two parallel lines and corresponding angles are angles between lines and transversal on the same side of it.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE