Answer
Verified
501k+ views
Hint- Here, we will be proceeding with the help of Midpoint Theorem and formula for coordinates of the centroid of a triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE