Answer
Verified
453.3k+ views
Hint: Here, we will first find the arithmetic mean and geometric mean of the terms in the expression. Then, we will use the relation between arithmetic mean and geometric mean to form an inequation. Finally, we will use the given information to find the minimum value of the expression \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\].
Formula Used:
We will use the following formulas:
The arithmetic mean of the \[n\] numbers \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] is given by the formula \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}\].
The geometric mean of the \[n\] numbers \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] is given by the formula \[G.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}\].
Complete step-by-step answer:
We will use the formula for A.M. and G.M. to find the minimum value of \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\].
The number of terms in the sum \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n\].
Therefore, using the formula \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}\], we get the arithmetic mean as
\[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}\]
The number of terms in the sum \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n\].
Therefore, using the formula \[G.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}\], we get the geometric mean as
\[G.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\]
Now, we know that the arithmetic mean is always greater than or equal to the geometric mean.
Therefore, we get
\[ \Rightarrow A.M. \ge G.M.\]
Substituting \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}\] and \[G.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\] in the inequation, we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\]
Rewriting the inequation, we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}\]
It is given that the number \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] are positive real numbers whose product is a fixed number \[c\].
Therefore, we get
\[{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c\]
Substituting \[{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c\] in the inequation \[\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}\], we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}}\]
Multiplying both sides by \[n\], we get
\[ \Rightarrow n\left( {\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}} \right) \ge n{\left( {2c} \right)^{1/n}}\]
Thus, we get
\[ \Rightarrow {a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} \ge n{\left( {2c} \right)^{1/n}}\]
Therefore, the value of the expression \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is greater than or equal to \[n{\left( {2c} \right)^{1/n}}\].
Thus, the minimum value of the expression \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n{\left( {2c} \right)^{1/n}}\].
The correct option is option (a).
Note: We multiplied both sides of the inequation \[\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}}\] by \[n\]. Since the number of terms cannot be negative, \[n\] is a positive integer. Therefore, we could multiply both sides of the inequation by \[n\] without changing the sign of the inequation.
Here we used geometric mean and arithmetic mean to solve the question. These are the two types of mean and the third type of mean is harmonic mean.
Formula Used:
We will use the following formulas:
The arithmetic mean of the \[n\] numbers \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] is given by the formula \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}\].
The geometric mean of the \[n\] numbers \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] is given by the formula \[G.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}\].
Complete step-by-step answer:
We will use the formula for A.M. and G.M. to find the minimum value of \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\].
The number of terms in the sum \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n\].
Therefore, using the formula \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + {a_n}}}{n}\], we get the arithmetic mean as
\[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}\]
The number of terms in the sum \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n\].
Therefore, using the formula \[G.M. = \sqrt[n]{{{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}}}\], we get the geometric mean as
\[G.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\]
Now, we know that the arithmetic mean is always greater than or equal to the geometric mean.
Therefore, we get
\[ \Rightarrow A.M. \ge G.M.\]
Substituting \[A.M. = \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}\] and \[G.M. = {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\] in the inequation, we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {{a_1}{a_2} \ldots \ldots {a_{n - 1}}2{a_n}} \right)^{1/n}}\]
Rewriting the inequation, we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}\]
It is given that the number \[{a_1},{a_2}, \ldots \ldots ,{a_n}\] are positive real numbers whose product is a fixed number \[c\].
Therefore, we get
\[{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c\]
Substituting \[{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n} = c\] in the inequation \[\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2{a_1}{a_2} \ldots \ldots {a_{n - 1}}{a_n}} \right)^{1/n}}\], we get
\[ \Rightarrow \dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}}\]
Multiplying both sides by \[n\], we get
\[ \Rightarrow n\left( {\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n}} \right) \ge n{\left( {2c} \right)^{1/n}}\]
Thus, we get
\[ \Rightarrow {a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n} \ge n{\left( {2c} \right)^{1/n}}\]
Therefore, the value of the expression \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is greater than or equal to \[n{\left( {2c} \right)^{1/n}}\].
Thus, the minimum value of the expression \[{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}\] is \[n{\left( {2c} \right)^{1/n}}\].
The correct option is option (a).
Note: We multiplied both sides of the inequation \[\dfrac{{{a_1} + {a_2} + \ldots \ldots + {a_{n - 1}} + 2{a_n}}}{n} \ge {\left( {2c} \right)^{1/n}}\] by \[n\]. Since the number of terms cannot be negative, \[n\] is a positive integer. Therefore, we could multiply both sides of the inequation by \[n\] without changing the sign of the inequation.
Here we used geometric mean and arithmetic mean to solve the question. These are the two types of mean and the third type of mean is harmonic mean.
Recently Updated Pages
Locus of all the points in a plane on which the moment class 11 phy sec 1 JEE_Main
A pulley is hinged at the centre and a massless thread class 11 physics JEE_Main
If sum of all the solution of equation 8cos xleft cos class 11 maths JEE_Main
The heat of combustion of carbon and carbon monoxide class 11 chemistry JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE