Answer
Verified
453k+ views
Hint: As the given question is based on determinant, we will use some of the properties of matrices and determinant like splitting determinants to solve the problem such as:
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
\[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\]
And also the given determinant includes terms of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$ which can be used in between to simplify the given complex form.
Complete step-by-step solution:
Step 1: As we have in the determinant the term $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$where the numerator is of the form ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)$. Thus substituting this in $\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}}$ we get
\[\dfrac{{1 - a_1^3b_1^3}}{{1 - {a_1}{b_1}}} = \dfrac{{(1 - {a_1}{b_1})(1 + {a_1}{b_1} + {a_1}^2{b_1}^2)}}{{1 - {a_1}{b_1}}} = 1 + {a_1}{b_1} + {a_1}^2{b_1}^2\]
Using the same procedure and rewriting all the terms in the determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
{1 + {a_1}{b_1} + {a_1}^2{b_1}^2}&{1 + {a_1}{b_2} + {a_1}^2{b_2}^2}&{1 + {a_1}{b_3} + {a_1}^2{b_3}^2} \\
{1 + {a_2}{b_1} + {a_2}^2{b_1}^2}&{1 + {a_2}{b_2} + {a_2}^2{b_2}^2}&{1 + {a_2}{b_3} + {a_2}^2{b_3}^2} \\
{1 + {a_3}{b_1} + {a_3}^2{b_1}^2}&{1 + {a_3}{b_2} + {a_3}^2{b_2}^2}&{1 + {a_3}{b_3} + {a_3}^2{b_3}^2}
\end{array}} \right| > 0\]
Step 2: Now splitting this determinant we get,
$\Rightarrow$\[\left| {\begin{array}{*{20}{c}}
1&{{a_1}}&{{a_1}^2} \\
1&{{a_2}}&{{a_2}^2} \\
1&{{a_3}}&{{a_3}^2}
\end{array}} \right|\left| {\begin{array}{*{20}{c}}
1&{{b_1}}&{{b_1}^2} \\
1&{{b_2}}&{{b_2}^2} \\
1&{{b_3}}&{{b_3}^2}
\end{array}} \right| > 0\] ………………..…Formula1
Step 3: Now applying the property, \[\left| {\begin{array}{*{20}{c}}
1&a&{{a^2}} \\
1&b&{{b^2}} \\
1&c&{{c^2}}
\end{array}} \right| = (a - b)(b - c)(c - a)\] we can rewrite formula1 as,
$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$ which is the required solution.
Hence the proof.
Step 4: Now we need to check for each case provided.
For case 1, ${a_1} < {a_2} < {a_3}$ and ${b_1} < {b_2} < {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) < 0,({a_2} - {a_3}) < 0,({a_3} - {a_1}) > 0$
And $({b_1} - {b_2}) < 0,({b_2} - {b_3}) < 0,({b_3} - {b_1}) > 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Step 5: Now applying case 2, ${a_1} > {a_2} > {a_3}$ and ${b_1} > {b_2} > {b_3}$
Thus taking out each term in the product we need and checking whether it is positive or negative.
$\left( {{a_1} - {a_2}} \right) > 0,({a_2} - {a_3}) > 0,({a_3} - {a_1}) < 0$
And $({b_1} - {b_2}) > 0,({b_2} - {b_3}) > 0,({b_3} - {b_1}) < 0$
Now combining partially,
$\Rightarrow$$\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1}) > 0,({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Combining them in total, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Final answer : For each of the cases, $\left( {{a_1} - {a_2}} \right)({a_2} - {a_3})({a_3} - {a_1})({b_1} - {b_2})({b_2} - {b_3})({b_3} - {b_1}) > 0$
Note: Here we need to be careful while splitting the determinant and while applying the cases.
Splitting the determinant can be reverted to check whether both the split and original determinants yield the same value. Applying cases is completely the application of algebraic property in real numbers named as ordering. That is if a,b are real numbers with a0.
Recently Updated Pages
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Rays from Sun converge at a point 15 cm in front of class 12 physics JEE_Main
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE