
If \[A(\alpha ,\beta ) = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&{{e^\beta }}
\end{array}} \right)\], then $A{\left( {\alpha ,\beta } \right)^{ - 1}}$ is equal to
A) ($ - \alpha , - \beta $)
B) ( $ - \alpha ,\beta $)
C) ( $\alpha , - \beta $)
D) ( $\alpha ,\beta $)
Answer
573.9k+ views
Hint: In the above question, first we will find the determinant of this matrix. Then we will find the adjoint of the matrix. To find the adjoint of the matrix we have to determine the cofactor of the given matrix. Then we know that the adjoint of a matrix is the transpose of the cofactor matrix. Finally, to find the inverse of the matrix we will divide the adjoint of the matrix by determinant of the matrix.
Formula used: $A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{{adj(A(\alpha ,\beta ))}}{{|A(\alpha ,\beta )|}}$.
Complete step-by-step answer:
Given, \[A(\alpha ,\beta ) = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&{{e^\beta }}
\end{array}} \right)\]
$|A(\alpha ,\beta )| = {e^\beta }({\cos ^2}\alpha + {\sin ^2}\beta ) = {e^\beta }$
Now, $A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{{adj(A(\alpha ,\beta ))}}{{|A(\alpha ,\beta )|}}$
Cofactors of \[A(\alpha ,\beta )\] = $\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{{e^{^\beta }}\sin \alpha }&0 \\
{ - {e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
We know that the adjoint of a matrix \[A(\alpha ,\beta )\]is the transpose of the cofactor matrix of \[A(\alpha ,\beta )\].
adj (A ($\alpha ,\beta $)) = $\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{ - {e^{^\beta }}\sin \alpha }&0 \\
{{e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
$A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{1}{{{e^\beta }}}\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{ - {e^{^\beta }}\sin \alpha }&0 \\
{{e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
We know that cos ($ - \alpha $) = cos$\alpha $and sin ( $ - \alpha $) = $ - \sin \alpha $.
$A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\left( {\begin{array}{*{20}{c}}
{\cos ( - \alpha )}&{\sin ( - \alpha )}&0 \\
{ - \sin ( - \alpha )}&{\cos ( - \alpha )}&0 \\
0&0&{{e^{ - \beta }}}
\end{array}} \right)$= A ($ - \alpha , - \beta $).
So, option A is the correct option.
Note: Matrix is an arrangement of numbers into rows and columns. It is an array of numbers. A matrix is a rectangular arrangement of numbers into rows and columns. For example: A matrix has 3 rows and 4 columns. We can do so many things with matrix: Addition- We can add two matrices; but before adding both the matrix must have the same size, i.e., the rows must match in size, and columns must match is size. Subtraction- We can subtract two matrices; subtracting is actually defined as the addition of a negative matrix: A + (- B). Inverse of a matrix is possible only for a square matrix.
Formula used: $A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{{adj(A(\alpha ,\beta ))}}{{|A(\alpha ,\beta )|}}$.
Complete step-by-step answer:
Given, \[A(\alpha ,\beta ) = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&{{e^\beta }}
\end{array}} \right)\]
$|A(\alpha ,\beta )| = {e^\beta }({\cos ^2}\alpha + {\sin ^2}\beta ) = {e^\beta }$
Now, $A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{{adj(A(\alpha ,\beta ))}}{{|A(\alpha ,\beta )|}}$
Cofactors of \[A(\alpha ,\beta )\] = $\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{{e^{^\beta }}\sin \alpha }&0 \\
{ - {e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
We know that the adjoint of a matrix \[A(\alpha ,\beta )\]is the transpose of the cofactor matrix of \[A(\alpha ,\beta )\].
adj (A ($\alpha ,\beta $)) = $\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{ - {e^{^\beta }}\sin \alpha }&0 \\
{{e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
$A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\dfrac{1}{{{e^\beta }}}\left( {\begin{array}{*{20}{c}}
{{e^\beta }\cos \alpha }&{ - {e^{^\beta }}\sin \alpha }&0 \\
{{e^\beta }\sin \alpha }&{{e^\beta }\cos \alpha }&0 \\
0&0&1
\end{array}} \right)$
We know that cos ($ - \alpha $) = cos$\alpha $and sin ( $ - \alpha $) = $ - \sin \alpha $.
$A{\left( {\alpha ,\beta } \right)^{ - 1}}$= $\left( {\begin{array}{*{20}{c}}
{\cos ( - \alpha )}&{\sin ( - \alpha )}&0 \\
{ - \sin ( - \alpha )}&{\cos ( - \alpha )}&0 \\
0&0&{{e^{ - \beta }}}
\end{array}} \right)$= A ($ - \alpha , - \beta $).
So, option A is the correct option.
Note: Matrix is an arrangement of numbers into rows and columns. It is an array of numbers. A matrix is a rectangular arrangement of numbers into rows and columns. For example: A matrix has 3 rows and 4 columns. We can do so many things with matrix: Addition- We can add two matrices; but before adding both the matrix must have the same size, i.e., the rows must match in size, and columns must match is size. Subtraction- We can subtract two matrices; subtracting is actually defined as the addition of a negative matrix: A + (- B). Inverse of a matrix is possible only for a square matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

