Answer
Verified
396k+ views
Hint: To get the divisor of the given function that is ${{a}^{2n-1}}+{{b}^{2n-1}}$, we will find the value of the function for different values of $n$ for some numbers. Then, we will look for common factors among all of them. This common factor will be the divisor of the given function.
Complete step by step answer:
Since, $n$ is the natural numbers. We will substitute the value of $n$ in the given function with numbers. The given function is:
$\Rightarrow {{a}^{2n-1}}+{{b}^{2n-1}}$
For $n=1$, the function will be:
$\Rightarrow {{a}^{2\times 1-1}}+{{b}^{2\times 1-1}}$
Now, we will simplify it by using multiplication and then subtraction as
$\begin{align}
& \Rightarrow {{a}^{2-1}}+{{b}^{2-1}} \\
& \Rightarrow {{a}^{1}}+{{b}^{1}} \\
\end{align}$
The above step can be written as:
$\Rightarrow a+b$
For $n=2$, we will get from the function:
$\Rightarrow {{a}^{2\times 2-1}}+{{b}^{2\times 2-1}}$
Now, we will be using multiplication in the above step and will get $4$ for multiplication $2$ with \[2\] as:
$\Rightarrow {{a}^{4-1}}+{{b}^{4-1}}$
And then we will subtract $1$ from $4$ and will get $3$:
$\Rightarrow {{a}^{3}}+{{b}^{3}}$
Here, we can expand it as:
\[\Rightarrow \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\]
Now, we will check it for $n=3$:
$\Rightarrow {{a}^{2\times 3-1}}+{{b}^{2\times 3-1}}$
After multiplication, the above step will be:
$\Rightarrow {{a}^{6-1}}+{{b}^{6-1}}$
And after subtracting $1$ from $6$, the above function will be:
$\Rightarrow {{a}^{5}}+{{b}^{5}}$
Further we will expand the above step as:
$\Rightarrow \left( a+b \right)\left( {{a}^{4}}-{{a}^{3}}b+{{a}^{2}}{{b}^{2}}-a{{b}^{3}}+{{b}^{4}} \right)$
And for substituting $n=$4, the function will be as:
$\Rightarrow {{a}^{2\times 4-1}}+{{b}^{2\times 4-1}}$
Multiplication of $2$ and $4$ will gives from the above step as:
$\Rightarrow {{a}^{8-1}}+{{b}^{8-1}}$
After subtracting $1$ from $8$, the above function will be:
$\Rightarrow {{a}^{7}}+{{b}^{7}}$
The expansion of the above step is:
$\Rightarrow \left( a+b \right)\left( {{a}^{6}}-{{a}^{5}}b+{{a}^{4}}{{b}^{2}}-{{a}^{3}}{{b}^{3}}+{{a}^{2}}{{b}^{4}}-a{{b}^{5}}+{{b}^{6}} \right)$
Similarly, we will proceed further.
As we can clearly see that there is a common factor among all the values for $n$ that is $\left( a+b \right)$.
Hence, ${{a}^{2n-1}}+{{b}^{2n-1}}$ is divisible by $\left( a+b \right)$.
So, the correct answer is “Option A”.
Note: We need to take care to expand the obtained function after applying the different value of $n$. For expansion, we can use the formula mentioned below:
$\left( {{a}^{n}}+{{b}^{n}} \right)=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}-\cdot \cdot \cdot +{{a}^{2}}{{b}^{n-3}}-a{{b}^{n-2}}+{{b}^{n-1}} \right)$
Where, $a,b$ and $n$ are natural numbers.
Complete step by step answer:
Since, $n$ is the natural numbers. We will substitute the value of $n$ in the given function with numbers. The given function is:
$\Rightarrow {{a}^{2n-1}}+{{b}^{2n-1}}$
For $n=1$, the function will be:
$\Rightarrow {{a}^{2\times 1-1}}+{{b}^{2\times 1-1}}$
Now, we will simplify it by using multiplication and then subtraction as
$\begin{align}
& \Rightarrow {{a}^{2-1}}+{{b}^{2-1}} \\
& \Rightarrow {{a}^{1}}+{{b}^{1}} \\
\end{align}$
The above step can be written as:
$\Rightarrow a+b$
For $n=2$, we will get from the function:
$\Rightarrow {{a}^{2\times 2-1}}+{{b}^{2\times 2-1}}$
Now, we will be using multiplication in the above step and will get $4$ for multiplication $2$ with \[2\] as:
$\Rightarrow {{a}^{4-1}}+{{b}^{4-1}}$
And then we will subtract $1$ from $4$ and will get $3$:
$\Rightarrow {{a}^{3}}+{{b}^{3}}$
Here, we can expand it as:
\[\Rightarrow \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\]
Now, we will check it for $n=3$:
$\Rightarrow {{a}^{2\times 3-1}}+{{b}^{2\times 3-1}}$
After multiplication, the above step will be:
$\Rightarrow {{a}^{6-1}}+{{b}^{6-1}}$
And after subtracting $1$ from $6$, the above function will be:
$\Rightarrow {{a}^{5}}+{{b}^{5}}$
Further we will expand the above step as:
$\Rightarrow \left( a+b \right)\left( {{a}^{4}}-{{a}^{3}}b+{{a}^{2}}{{b}^{2}}-a{{b}^{3}}+{{b}^{4}} \right)$
And for substituting $n=$4, the function will be as:
$\Rightarrow {{a}^{2\times 4-1}}+{{b}^{2\times 4-1}}$
Multiplication of $2$ and $4$ will gives from the above step as:
$\Rightarrow {{a}^{8-1}}+{{b}^{8-1}}$
After subtracting $1$ from $8$, the above function will be:
$\Rightarrow {{a}^{7}}+{{b}^{7}}$
The expansion of the above step is:
$\Rightarrow \left( a+b \right)\left( {{a}^{6}}-{{a}^{5}}b+{{a}^{4}}{{b}^{2}}-{{a}^{3}}{{b}^{3}}+{{a}^{2}}{{b}^{4}}-a{{b}^{5}}+{{b}^{6}} \right)$
Similarly, we will proceed further.
As we can clearly see that there is a common factor among all the values for $n$ that is $\left( a+b \right)$.
Hence, ${{a}^{2n-1}}+{{b}^{2n-1}}$ is divisible by $\left( a+b \right)$.
So, the correct answer is “Option A”.
Note: We need to take care to expand the obtained function after applying the different value of $n$. For expansion, we can use the formula mentioned below:
$\left( {{a}^{n}}+{{b}^{n}} \right)=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}-\cdot \cdot \cdot +{{a}^{2}}{{b}^{n-3}}-a{{b}^{n-2}}+{{b}^{n-1}} \right)$
Where, $a,b$ and $n$ are natural numbers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE