Answer
Verified
481.2k+ views
Hint: According to the given data in the question, we draw an appropriate figure that helps us find the coordinates of points A and B. Also given AOB is an equilateral triangle, i.e. all angles in the triangle are equal to 60°.
Complete step-by-step answer:
Given O (0, 0) is the origin and AB is the double ordinate of the hyperbola i.e. polar coordinates of
A = (a secθ, b tanθ), B = (a secθ, -b tanθ).
Since ∆AOB is equilateral, OA = AB
We use the formula for distance between two points (d$^2$ =${\left( {{{\text{x}}_2} - {{\text{x}}_1}} \right)^2} + {\left( {{{\text{y}}_2} - {{\text{y}}_1}} \right)^2}$), to form a relation OA = AB, which give us
$\sqrt {{{\left( {{\text{asec}}\theta {\text{ - 0}}} \right)}^2} + {{\left( {{\text{-b}}\tan \theta - 0} \right)}^2}} = \sqrt {{{\left( {{\text{asec}}\theta {\text{ - asec}}\theta } \right)}^2} + {{\left( {{\text{btan}}\theta {\text{ - }}\left( { - {\text{btan}}\theta } \right)} \right)}^2}} $
$ \Rightarrow {{\text{a}}^2}{\text{se}}{{\text{c}}^2}\theta + {{\text{b}}^2}{\text{ta}}{{\text{n}}^2}\theta = 4{{\text{b}}^2}{\tan ^2}\theta $
$ \Rightarrow {{\text{a}}^2}{\text{se}}{{\text{c}}^2}\theta = 3{{\text{b}}^2}{\tan ^2}\theta $ -- (1)
We know according to trigonometric identities, ${\text{se}}{{\text{c}}^2}\theta - {\text{ta}}{{\text{n}}^2}\theta = {\text{ 1}}$
Hence${\text{se}}{{\text{c}}^2}\theta = 1 + {\text{ta}}{{\text{n}}^2}\theta $, substitute this in equation (1), we get
${{\text{a}}^2} + {{\text{a}}^2}{\text{ta}}{{\text{n}}^2}\theta = 3{{\text{b}}^2}{\text{ta}}{{\text{n}}^2}\theta $
$ \Rightarrow \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^2}}} = \dfrac{{1 + {\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$
Now we know for eccentricity ${{\text{e}}^2} = 1 + \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^2}}}$=$1 + \dfrac{{1 + {\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$=$\dfrac{{1 + 4{\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$
= $\dfrac{4}{3} $ +$\dfrac{1}{{3{\text{si}}{{\text{n}}^2}\theta }}$.
Using${\text{si}}{{\text{n}}^2}\theta {\text{ < 1}}$, we get ${{\text{e}}^2}{\text{ > }}\dfrac{4}{3}$
Hence e >$\dfrac{2}{{\sqrt 3 }}$. Option D is the correct answer.
Note: In order to solve these types of questions the key concept is to carefully draw a precise figure according to the given data. Then we use the figure to derive necessary relations which help us compute the solution. Basic knowledge of geometrical formulae of hyperbola, its eccentricity and trigonometric functions is very important in solving these problems.
Complete step-by-step answer:
Given O (0, 0) is the origin and AB is the double ordinate of the hyperbola i.e. polar coordinates of
A = (a secθ, b tanθ), B = (a secθ, -b tanθ).
Since ∆AOB is equilateral, OA = AB
We use the formula for distance between two points (d$^2$ =${\left( {{{\text{x}}_2} - {{\text{x}}_1}} \right)^2} + {\left( {{{\text{y}}_2} - {{\text{y}}_1}} \right)^2}$), to form a relation OA = AB, which give us
$\sqrt {{{\left( {{\text{asec}}\theta {\text{ - 0}}} \right)}^2} + {{\left( {{\text{-b}}\tan \theta - 0} \right)}^2}} = \sqrt {{{\left( {{\text{asec}}\theta {\text{ - asec}}\theta } \right)}^2} + {{\left( {{\text{btan}}\theta {\text{ - }}\left( { - {\text{btan}}\theta } \right)} \right)}^2}} $
$ \Rightarrow {{\text{a}}^2}{\text{se}}{{\text{c}}^2}\theta + {{\text{b}}^2}{\text{ta}}{{\text{n}}^2}\theta = 4{{\text{b}}^2}{\tan ^2}\theta $
$ \Rightarrow {{\text{a}}^2}{\text{se}}{{\text{c}}^2}\theta = 3{{\text{b}}^2}{\tan ^2}\theta $ -- (1)
We know according to trigonometric identities, ${\text{se}}{{\text{c}}^2}\theta - {\text{ta}}{{\text{n}}^2}\theta = {\text{ 1}}$
Hence${\text{se}}{{\text{c}}^2}\theta = 1 + {\text{ta}}{{\text{n}}^2}\theta $, substitute this in equation (1), we get
${{\text{a}}^2} + {{\text{a}}^2}{\text{ta}}{{\text{n}}^2}\theta = 3{{\text{b}}^2}{\text{ta}}{{\text{n}}^2}\theta $
$ \Rightarrow \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^2}}} = \dfrac{{1 + {\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$
Now we know for eccentricity ${{\text{e}}^2} = 1 + \dfrac{{{{\text{b}}^2}}}{{{{\text{a}}^2}}}$=$1 + \dfrac{{1 + {\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$=$\dfrac{{1 + 4{\text{ta}}{{\text{n}}^2}\theta }}{{3{\text{ta}}{{\text{n}}^2}\theta }}$
= $\dfrac{4}{3} $ +$\dfrac{1}{{3{\text{si}}{{\text{n}}^2}\theta }}$.
Using${\text{si}}{{\text{n}}^2}\theta {\text{ < 1}}$, we get ${{\text{e}}^2}{\text{ > }}\dfrac{4}{3}$
Hence e >$\dfrac{2}{{\sqrt 3 }}$. Option D is the correct answer.
Note: In order to solve these types of questions the key concept is to carefully draw a precise figure according to the given data. Then we use the figure to derive necessary relations which help us compute the solution. Basic knowledge of geometrical formulae of hyperbola, its eccentricity and trigonometric functions is very important in solving these problems.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers