Answer
Verified
398.1k+ views
Hint: To prove that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$, we have $abc = 1$. So, using this we need to take $c = \dfrac{1}{{ab}}$ and substitute in the LHS of the given equation. After substituting, take LCM and simplify the equation further and we will get our answer.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE