
If $a,b,c$ are in A.P., ${a^2},{b^2},{c^2}$ are in H.P., then prove that either $a = b = c$ or $a,b, -
\dfrac{c}{2}$ form a G.P.
Answer
522.6k+ views
Hint: Use properties of AP and HP on given conditions to get the desired result, that is form two equations using AM and HM and simplify.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
