Answer
Verified
499.5k+ views
Hint: Expand the brackets and rearrange the terms using the condition that \[abcd=1\]. Use the Arithmetic Mean-Geometric Mean Property (AM-GM Property) which states that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\], to find the minimum value of the given expression.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Recently Updated Pages
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE