
If \[a,b,c,d\] are four positive real numbers such that \[abcd=1\], then the minimum value of \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is equal to
Answer
520.5k+ views
Hint: Expand the brackets and rearrange the terms using the condition that \[abcd=1\]. Use the Arithmetic Mean-Geometric Mean Property (AM-GM Property) which states that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\], to find the minimum value of the given expression.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
