If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then show that equation of locus of P is $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Answer
Verified
448.5k+ views
Hint: In this type of question we will make use of distance between two points formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be, AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ and also we also be using the square of difference of two variables i.e.,${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$.
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE