Answer
Verified
471.3k+ views
Hint: The value of matrix $ {{A}^{50}} $ cannot be directly calculated just by simply multiplying A 50 times. Using hit and trial method find $ {{A}^{2}},{{A}^{3}}.... $ until you get some pattern. Once you get a pattern of all elements in the matrices, predict the matrix $ {{A}^{50}} $
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE