Answer
Verified
431.4k+ views
Hint: In this problem, we have to prove the given condition with the given matrix. We have to find the transpose of the given matrix to multiply the given matrix and the transpose of that matrix to get the identity matrix, which will be equal to 1. We know that we can find the transpose of a matrix, by interchanging its rows and columns. We can multiply two matrices by matrix multiplication to prove that the multiplication of the matrix and its transpose equals 1.
Complete step by step answer:
We know that the given matrix is,
\[A=\left( \begin{matrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
Now we can find the transpose of the above matrix.
We know that we can find the transpose of a matrix, by interchanging its rows and columns.
\[A'=\left( \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
We have to prove \[A'\times A=1\].
We can multiply the matrix A and A’, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha \\
\end{matrix} \right)\left( \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
Now we can multiply the above step using matrix multiplication, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \cos \alpha \sin \alpha -\cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha -\cos \alpha \sin \alpha & {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \\
\end{matrix} \right)\]
We know that \[{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1\], we can now substitute this in the above step, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)=1\]
Therefore, \[A'-A=1\]is proved.
Note: Students make mistakes while multiplying two matrices, we should multiply the first row of the first matrix and the first column of the second matrix and add that, similarly we can do multiplication. We should also know that we can find the transpose of a matrix, by interchanging its rows and columns. We should also know some trigonometric properties and formulas to solve or prove these types of problems.
Complete step by step answer:
We know that the given matrix is,
\[A=\left( \begin{matrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
Now we can find the transpose of the above matrix.
We know that we can find the transpose of a matrix, by interchanging its rows and columns.
\[A'=\left( \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
We have to prove \[A'\times A=1\].
We can multiply the matrix A and A’, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha \\
\end{matrix} \right)\left( \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right)\]
Now we can multiply the above step using matrix multiplication, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha & \cos \alpha \sin \alpha -\cos \alpha \sin \alpha \\
\cos \alpha \sin \alpha -\cos \alpha \sin \alpha & {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \\
\end{matrix} \right)\]
We know that \[{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1\], we can now substitute this in the above step, we get
\[\Rightarrow A\times A'=\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)=1\]
Therefore, \[A'-A=1\]is proved.
Note: Students make mistakes while multiplying two matrices, we should multiply the first row of the first matrix and the first column of the second matrix and add that, similarly we can do multiplication. We should also know that we can find the transpose of a matrix, by interchanging its rows and columns. We should also know some trigonometric properties and formulas to solve or prove these types of problems.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE