
If $\alpha +\beta =-2$ and ${{\alpha }^{3}}+{{\beta }^{3}}=-56$, then the quadratic expression whose roots are $\alpha $ and $\beta $ is :
[a] ${{x}^{2}}+2x-16$
[b] ${{x}^{2}}+2x+15$
[c] ${{x}^{2}}+2x-12$
[d] ${{x}^{2}}+2x-8$
Answer
619.2k+ views
Hint: Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of $\alpha \beta $ and the use the property that the quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

