Answer
Verified
497.1k+ views
Hint: Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of $\alpha \beta $ and the use the property that the quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE