
If \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\], then determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
(a) \[\dfrac{21}{346}\]
(b) \[\dfrac{29}{358}\]
(c) \[\dfrac{1}{12}\]
(d) \[\dfrac{7}{116}\]
Answer
585.3k+ views
Hint: In this question, we are that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\]. Now for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\]. We will also use the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Complete step by step answer:
We are given the equation \[375{{x}^{2}}-25x-2=0\].
It is also given that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Since we know that for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\].
Now comparing quadratic equation \[a{{x}^{2}}+bx+c=0\] with the given equation \[375{{x}^{2}}-25x-2=0\], we will have
\[a=375,b=-25\] and \[c=-2\].
Now since \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Therefore we have
\[\begin{align}
& \alpha +\beta =-\dfrac{b}{a} \\
& =\dfrac{25}{375}
\end{align}\]
And also
The product of the roots \[\alpha \] and \[\beta \] is given by
\[\begin{align}
& \alpha \beta =\dfrac{c}{a} \\
& =-\dfrac{2}{375}
\end{align}\]
Now consider the expression \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
Since we know that \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\], therefore we have
\[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}.........(1)\]
Also since we know that sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Here we have the geometric series \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] with common ration \[\alpha <1\] and \[\beta <1\] respectively.
Therefore the sum \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}=\dfrac{\alpha }{1-\alpha }.......(2)\]
And \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}=\dfrac{\beta }{1-\beta }.......(3)\]
Now on substituting the values of equation (2) and equation (3) in equation (1), we get
\[\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\alpha }^{r}}}+\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\beta }^{r}}}=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta }\]
On simplifying the above expression, we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta } \\
& =\dfrac{\alpha \left( 1-\beta \right)+\beta \left( 1-\alpha \right)}{\left( 1-\alpha \right)\left( 1-\beta \right)} \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\alpha -\beta +\alpha \beta } \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta }
\end{align}\]
Now on substituting the values \[\alpha +\beta =\dfrac{25}{375}\] and \[\alpha \beta =-\dfrac{2}{375}\] in the above equation we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta } \\
& =\dfrac{\dfrac{25}{375}-2\left( \dfrac{-2}{375} \right)}{1-\left( \dfrac{25}{375} \right)+\left( \dfrac{-2}{375} \right)}
\end{align}\]
On simplifying the above equation, we will have
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{25+4}{375-25-2} \\
& =\dfrac{29}{348} \\
& =\dfrac{1}{12}
\end{align}\]
Therefore we have that the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] is equals to \[\dfrac{1}{12}\].
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] we have to first evaluate the limit to get \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] and then proceed using the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Complete step by step answer:
We are given the equation \[375{{x}^{2}}-25x-2=0\].
It is also given that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Since we know that for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\].
Now comparing quadratic equation \[a{{x}^{2}}+bx+c=0\] with the given equation \[375{{x}^{2}}-25x-2=0\], we will have
\[a=375,b=-25\] and \[c=-2\].
Now since \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Therefore we have
\[\begin{align}
& \alpha +\beta =-\dfrac{b}{a} \\
& =\dfrac{25}{375}
\end{align}\]
And also
The product of the roots \[\alpha \] and \[\beta \] is given by
\[\begin{align}
& \alpha \beta =\dfrac{c}{a} \\
& =-\dfrac{2}{375}
\end{align}\]
Now consider the expression \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
Since we know that \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\], therefore we have
\[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}.........(1)\]
Also since we know that sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Here we have the geometric series \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] with common ration \[\alpha <1\] and \[\beta <1\] respectively.
Therefore the sum \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}=\dfrac{\alpha }{1-\alpha }.......(2)\]
And \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}=\dfrac{\beta }{1-\beta }.......(3)\]
Now on substituting the values of equation (2) and equation (3) in equation (1), we get
\[\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\alpha }^{r}}}+\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\beta }^{r}}}=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta }\]
On simplifying the above expression, we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta } \\
& =\dfrac{\alpha \left( 1-\beta \right)+\beta \left( 1-\alpha \right)}{\left( 1-\alpha \right)\left( 1-\beta \right)} \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\alpha -\beta +\alpha \beta } \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta }
\end{align}\]
Now on substituting the values \[\alpha +\beta =\dfrac{25}{375}\] and \[\alpha \beta =-\dfrac{2}{375}\] in the above equation we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta } \\
& =\dfrac{\dfrac{25}{375}-2\left( \dfrac{-2}{375} \right)}{1-\left( \dfrac{25}{375} \right)+\left( \dfrac{-2}{375} \right)}
\end{align}\]
On simplifying the above equation, we will have
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{25+4}{375-25-2} \\
& =\dfrac{29}{348} \\
& =\dfrac{1}{12}
\end{align}\]
Therefore we have that the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] is equals to \[\dfrac{1}{12}\].
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] we have to first evaluate the limit to get \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] and then proceed using the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

