Answer
Verified
399.4k+ views
Hint: To solve this problem, we make use of the basic properties of a cubic polynomial related to the relation of sum of roots, product of roots and product of roots taken two at a time. That is,
Complete step-by-step answer:
For, ${{x}^{3}}+p{{x}^{2}}+qx+r$=0,
$\alpha +\beta +\gamma $=-p
$\alpha \beta +\beta \gamma +\gamma \alpha $=q
$\alpha \beta \gamma $=-r
We make use of these properties to find the cubic equation with new roots.
We have the roots as $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$. We know how to find the sum of roots, product of roots and product of roots taken two at a time in case of these new roots.
In the question in particular, we need to find the coefficient of x for the cubic polynomial-
${{x}^{3}}+p{{x}^{2}}+qx+r$=0
Coefficient of x is given by product of roots of the cubic equation taken two at a time. In the normal cubic polynomial, this was $\alpha \beta +\beta \gamma +\gamma \alpha $.
In case of the new roots, $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$, the product of the new roots taken two at a time is –
=$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$
We now expand each of these three terms, we get,
=$[{{\alpha }^{2}}{{\beta }^{2}}\text{+}{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}$]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}{{\alpha }^{2}}\beta \gamma +3\alpha {{\beta }^{2}}\gamma +3\alpha \beta {{\gamma }^{2}}\]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (1)
Now, we know that,
q=$\alpha \beta +\beta \gamma +\gamma \alpha $
Squaring LHS and RHS, we get,
${{q}^{2}}=$${{\left( \alpha \beta +\beta \gamma +\gamma \alpha \right)}^{2}}$
We use the following algebraic identity,
${{(a+b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2(ab+bc+ca)$
Thus, we have,
${{q}^{2}}=$\[{{(\alpha \beta )}^{2}}+{{(\beta \gamma )}^{2}}+{{(\gamma \alpha )}^{2}}+2(\alpha \beta )(\beta \gamma )+2(\beta \gamma )(\gamma \alpha )+2(\gamma \alpha )(\alpha \beta )\]
Thus, be re-arranging, we would have,
${{q}^{2}}=$\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (2)
Now, from (1)
$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]
Thus,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )+\alpha \beta \gamma (\alpha +\beta +\gamma )\]
From (2), we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]= ${{q}^{2}}+(-p)(-r)$
Since, we know that,
$\alpha +\beta +\gamma $=-p
$\alpha \beta \gamma $=-r
Thus, we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]=${{q}^{2}}+pr$
Hence, the correct answer is (b) ${{q}^{2}}+pr$.
Note: For solving problems related to roots of a cubic polynomial, we should know the basic properties of sum of roots, product of roots and product of roots taken two at a time. Further, it is then to solve the problem, one should be aware about the basic manipulations involving algebraic terms like re-grouping, re-arrangement and usage of the known properties.
Complete step-by-step answer:
For, ${{x}^{3}}+p{{x}^{2}}+qx+r$=0,
$\alpha +\beta +\gamma $=-p
$\alpha \beta +\beta \gamma +\gamma \alpha $=q
$\alpha \beta \gamma $=-r
We make use of these properties to find the cubic equation with new roots.
We have the roots as $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$. We know how to find the sum of roots, product of roots and product of roots taken two at a time in case of these new roots.
In the question in particular, we need to find the coefficient of x for the cubic polynomial-
${{x}^{3}}+p{{x}^{2}}+qx+r$=0
Coefficient of x is given by product of roots of the cubic equation taken two at a time. In the normal cubic polynomial, this was $\alpha \beta +\beta \gamma +\gamma \alpha $.
In case of the new roots, $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$, the product of the new roots taken two at a time is –
=$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$
We now expand each of these three terms, we get,
=$[{{\alpha }^{2}}{{\beta }^{2}}\text{+}{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}$]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}{{\alpha }^{2}}\beta \gamma +3\alpha {{\beta }^{2}}\gamma +3\alpha \beta {{\gamma }^{2}}\]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (1)
Now, we know that,
q=$\alpha \beta +\beta \gamma +\gamma \alpha $
Squaring LHS and RHS, we get,
${{q}^{2}}=$${{\left( \alpha \beta +\beta \gamma +\gamma \alpha \right)}^{2}}$
We use the following algebraic identity,
${{(a+b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2(ab+bc+ca)$
Thus, we have,
${{q}^{2}}=$\[{{(\alpha \beta )}^{2}}+{{(\beta \gamma )}^{2}}+{{(\gamma \alpha )}^{2}}+2(\alpha \beta )(\beta \gamma )+2(\beta \gamma )(\gamma \alpha )+2(\gamma \alpha )(\alpha \beta )\]
Thus, be re-arranging, we would have,
${{q}^{2}}=$\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (2)
Now, from (1)
$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]
Thus,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )+\alpha \beta \gamma (\alpha +\beta +\gamma )\]
From (2), we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]= ${{q}^{2}}+(-p)(-r)$
Since, we know that,
$\alpha +\beta +\gamma $=-p
$\alpha \beta \gamma $=-r
Thus, we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]=${{q}^{2}}+pr$
Hence, the correct answer is (b) ${{q}^{2}}+pr$.
Note: For solving problems related to roots of a cubic polynomial, we should know the basic properties of sum of roots, product of roots and product of roots taken two at a time. Further, it is then to solve the problem, one should be aware about the basic manipulations involving algebraic terms like re-grouping, re-arrangement and usage of the known properties.
Recently Updated Pages
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
What is the distance between the circumcentre and the class 10 maths JEE_Main
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Fill in the blank with the most appropriate word She class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
Write a letter to the principal requesting him to grant class 10 english CBSE
Name the scientist who invented the electric cell and class 10 physics CBSE
Discuss the main reasons for poverty in India