
If $\alpha ,\beta ,\gamma $ are the lengths of the altitudes of a triangle ABC with area $\vartriangle $, then $\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right) = $
A). ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C$
B). ${\cos ^2}A + {\cos ^2}B + {\cos ^2}C$
C). ${\tan ^2}A + {\tan ^2}B + {\tan ^2}C$
D). ${\cot ^2}A + {\cot ^2}B + {\cot ^2}C$
Answer
492.9k+ views
Hint: We know that the area of triangle is given by $\vartriangle = \dfrac{1}{2} \times base \times height$. Considering the bases of the triangles as a, b, c. We will be now able to determine the values of altitudes given that is $\alpha ,\beta ,\gamma $. On substituting these $\alpha ,\beta ,\gamma $values in the $\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right)$, we will get the require solution. We might use some trigonometric rules, i.e., sine rule which relates the lengths of the sides of a triangle to the sines of its angles.
Complete step-by-step solution:
Given $\alpha ,\beta ,\gamma $ are the lengths of the altitudes of a triangle ABC with area$\vartriangle $
$\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right) = $? … (1)
We know that the area of the triangle can be given by $\vartriangle = \dfrac{1}{2} \times base \times height$
$\vartriangle = \dfrac{1}{2}a\alpha = \dfrac{1}{2}b\beta = \dfrac{1}{2}c\gamma $ (Using$\vartriangle = \dfrac{1}{2} \times base \times height$)
$\alpha = \dfrac{{2\vartriangle }}{a}$,$\beta = \dfrac{{2\vartriangle }}{b}$,$\gamma = \dfrac{{2\vartriangle }}{c}$
Substituting in equation (1), we get
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right)$
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {{{\left( {\dfrac{a}{{2\vartriangle }}} \right)}^2} + {{\left( {\dfrac{b}{{2\vartriangle }}} \right)}^2} + {{\left( {\dfrac{c}{{2\vartriangle }}} \right)}^2}} \right)$
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{{{a^2}}}{{4{\vartriangle ^2}}} + \dfrac{{{b^2}}}{{4{\vartriangle ^2}}} + \dfrac{{{c^2}}}{{4{\vartriangle ^2}}}} \right)$
Therefore, $4{\vartriangle ^2}$ is common and we will take it out from the bracket
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{4{\vartriangle ^2}{R^2}}}\left( {{a^2} + {b^2} + {c^2}} \right)$
Here ${\vartriangle ^2}$ is cancelled, which now gives us
$ = \dfrac{1}{{4{R^2}}}\left( {{a^2} + {b^2} + {c^2}} \right)$
$ = \dfrac{{{a^2} + {b^2} + {c^2}}}{{4{R^2}}}$
$ = \dfrac{{{a^2}}}{{4{R^2}}} + \dfrac{{{b^2}}}{{4{R^2}}} + \dfrac{{{c^2}}}{{4{R^2}}}$……... (2)
From the sine rule, we know that
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
The sine rule used when we are given either a) two angles and one side, or b) two sides and a non-included angle. To solve a triangle is to find the lengths of each of its sides and all its angles we use this sine rule.
From the extended law of sines we know that,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R$
The Extended Law of Sines is used to relate the radius of the circumcircle of a triangle to and angle/opposite side pair.
Therefore from the extended law of sines,
$$\sin A = \dfrac{a}{{2R}}$$,$\sin B = \dfrac{b}{{2R}}$,$\sin C = \dfrac{c}{{2R}}$
Now equation (2) can be re-written as
$ \Rightarrow {\left( {\dfrac{a}{{2R}}} \right)^2} + {\left( {\dfrac{b}{{2R}}} \right)^2} + {\left( {\dfrac{c}{{2R}}} \right)^2}$
=${\sin ^2}A + {\sin ^2}B + {\sin ^2}C$
Therefore $\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right) = {\sin ^2}A + {\sin ^2}B + {\sin ^2}C$
Note: The same way we have cosine rule which is used when we are given either a) three sides or b) two sides and the included angle. The cosine rule gives ${a^2} = {b^2} + {c^2} - 2bc\cos A$, ${b^2} = {a^2} + {c^2} - 2ac\cos B$ and ${c^2} = {a^2} + {b^2} - 2ab\cos C$.
Complete step-by-step solution:
Given $\alpha ,\beta ,\gamma $ are the lengths of the altitudes of a triangle ABC with area$\vartriangle $

$\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right) = $? … (1)
We know that the area of the triangle can be given by $\vartriangle = \dfrac{1}{2} \times base \times height$
$\vartriangle = \dfrac{1}{2}a\alpha = \dfrac{1}{2}b\beta = \dfrac{1}{2}c\gamma $ (Using$\vartriangle = \dfrac{1}{2} \times base \times height$)
$\alpha = \dfrac{{2\vartriangle }}{a}$,$\beta = \dfrac{{2\vartriangle }}{b}$,$\gamma = \dfrac{{2\vartriangle }}{c}$
Substituting in equation (1), we get
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right)$
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {{{\left( {\dfrac{a}{{2\vartriangle }}} \right)}^2} + {{\left( {\dfrac{b}{{2\vartriangle }}} \right)}^2} + {{\left( {\dfrac{c}{{2\vartriangle }}} \right)}^2}} \right)$
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{{{a^2}}}{{4{\vartriangle ^2}}} + \dfrac{{{b^2}}}{{4{\vartriangle ^2}}} + \dfrac{{{c^2}}}{{4{\vartriangle ^2}}}} \right)$
Therefore, $4{\vartriangle ^2}$ is common and we will take it out from the bracket
$ \Rightarrow \dfrac{{{\vartriangle ^2}}}{{4{\vartriangle ^2}{R^2}}}\left( {{a^2} + {b^2} + {c^2}} \right)$
Here ${\vartriangle ^2}$ is cancelled, which now gives us
$ = \dfrac{1}{{4{R^2}}}\left( {{a^2} + {b^2} + {c^2}} \right)$
$ = \dfrac{{{a^2} + {b^2} + {c^2}}}{{4{R^2}}}$
$ = \dfrac{{{a^2}}}{{4{R^2}}} + \dfrac{{{b^2}}}{{4{R^2}}} + \dfrac{{{c^2}}}{{4{R^2}}}$……... (2)
From the sine rule, we know that
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
The sine rule used when we are given either a) two angles and one side, or b) two sides and a non-included angle. To solve a triangle is to find the lengths of each of its sides and all its angles we use this sine rule.
From the extended law of sines we know that,
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R$
The Extended Law of Sines is used to relate the radius of the circumcircle of a triangle to and angle/opposite side pair.
Therefore from the extended law of sines,
$$\sin A = \dfrac{a}{{2R}}$$,$\sin B = \dfrac{b}{{2R}}$,$\sin C = \dfrac{c}{{2R}}$
Now equation (2) can be re-written as
$ \Rightarrow {\left( {\dfrac{a}{{2R}}} \right)^2} + {\left( {\dfrac{b}{{2R}}} \right)^2} + {\left( {\dfrac{c}{{2R}}} \right)^2}$
=${\sin ^2}A + {\sin ^2}B + {\sin ^2}C$
Therefore $\dfrac{{{\vartriangle ^2}}}{{{R^2}}}\left( {\dfrac{1}{{{\alpha ^2}}} + \dfrac{1}{{{\beta ^2}}} + \dfrac{1}{{{\gamma ^2}}}} \right) = {\sin ^2}A + {\sin ^2}B + {\sin ^2}C$
Note: The same way we have cosine rule which is used when we are given either a) three sides or b) two sides and the included angle. The cosine rule gives ${a^2} = {b^2} + {c^2} - 2bc\cos A$, ${b^2} = {a^2} + {c^2} - 2ac\cos B$ and ${c^2} = {a^2} + {b^2} - 2ab\cos C$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Explain the Treaty of Vienna of 1815 class 10 social science CBSE

The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE

Name the place where the Indian National Congress session class 10 social science CBSE

Name the place where Indian National Congress session class 10 social science CBSE

Name the largest artificial lake that was built in class 10 social science CBSE

Distinguish between coming together federations and class 10 social science CBSE
