Answer
Verified
498.3k+ views
Hint- Here, we will proceed by using the formulas which are $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}}$, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}}$ and $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}}$ for any general cubic equation having three roots as $\alpha ,\beta ,\gamma $
“Complete step-by-step answer:”
Given cubic equation is ${x^3} + ax + b = 0{\text{ }} \to (1{\text{)}}$
For any general cubic equation $c{x^3} + d{x^2} + ex + f = 0{\text{ }} \to {\text{(2)}}$ which have three roots as $\alpha ,\beta ,\gamma $,
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - d}}{c}{\text{ }} \to {\text{(3)}}$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{e}{c}{\text{ }} \to {\text{(4)}}$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - f}}{c}{\text{ }} \to {\text{(5)}}$
By comparing the given cubic equation (i.e., equation (1)) with the general cubic equation (i.e., equation (2)), we get
c=1, d=0, e=a and f=b
Putting the above obtained values, equations (3), (4) and (5) becomes
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{0}{1} = 0$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{a}{1} = a$
Product of roots, \[\alpha \beta \gamma = \dfrac{{ - b}}{1} = - b\]
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)$
So, ${\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( {\alpha + \beta + \gamma } \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( 0 \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = 0 \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\alpha \beta \gamma \\
$
As, \[\alpha \beta \gamma = - b\]
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\left( { - b} \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = - 3b \to {\text{(6)}} \\
$
Also, $
{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz \\
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {x + y + z} \right)^2} - 2\left( {xy + yz + xz} \right) \\
$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$ and $\alpha \beta + \beta \gamma + \alpha \gamma = a$
$
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( 0 \right)^2} - 2\left( a \right) \\
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = - 2a{\text{ }} \to {\text{(7)}} \\
$
Using equations (6) and (7), we get
$\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}} = \dfrac{{ - 3b}}{{ - 2a}} = \dfrac{{3b}}{{2a}}$
Hence, option A is correct.
Note- In this particular problem, we have converted the expression $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$ whose value is required in terms of the known values which are $\left( {\alpha + \beta + \gamma } \right)$, $\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$ and \[\alpha \beta \gamma \] which can be easily obtained with the help of the known formulas for any general cubic equation.
“Complete step-by-step answer:”
Given cubic equation is ${x^3} + ax + b = 0{\text{ }} \to (1{\text{)}}$
For any general cubic equation $c{x^3} + d{x^2} + ex + f = 0{\text{ }} \to {\text{(2)}}$ which have three roots as $\alpha ,\beta ,\gamma $,
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - d}}{c}{\text{ }} \to {\text{(3)}}$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{e}{c}{\text{ }} \to {\text{(4)}}$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - f}}{c}{\text{ }} \to {\text{(5)}}$
By comparing the given cubic equation (i.e., equation (1)) with the general cubic equation (i.e., equation (2)), we get
c=1, d=0, e=a and f=b
Putting the above obtained values, equations (3), (4) and (5) becomes
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{0}{1} = 0$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{a}{1} = a$
Product of roots, \[\alpha \beta \gamma = \dfrac{{ - b}}{1} = - b\]
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)$
So, ${\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( {\alpha + \beta + \gamma } \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( 0 \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = 0 \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\alpha \beta \gamma \\
$
As, \[\alpha \beta \gamma = - b\]
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\left( { - b} \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = - 3b \to {\text{(6)}} \\
$
Also, $
{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz \\
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {x + y + z} \right)^2} - 2\left( {xy + yz + xz} \right) \\
$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$ and $\alpha \beta + \beta \gamma + \alpha \gamma = a$
$
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( 0 \right)^2} - 2\left( a \right) \\
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = - 2a{\text{ }} \to {\text{(7)}} \\
$
Using equations (6) and (7), we get
$\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}} = \dfrac{{ - 3b}}{{ - 2a}} = \dfrac{{3b}}{{2a}}$
Hence, option A is correct.
Note- In this particular problem, we have converted the expression $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$ whose value is required in terms of the known values which are $\left( {\alpha + \beta + \gamma } \right)$, $\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$ and \[\alpha \beta \gamma \] which can be easily obtained with the help of the known formulas for any general cubic equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE