Answer
Verified
497.4k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE