
If $a\ne p$ , $b\ne q$ and $c\ne r$,and $\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=\text{0}$, then find the value of $\dfrac{p}{p-a}+\dfrac{b}{q-b}+\dfrac{r}{r-c}$
Answer
582.9k+ views
Hint: To solve this question, firstly we will use row operations ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$ and ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$. After that, we will expand the determinant along row ${{R}_{1}}$. After that, we will divide the whole equation by (p-a)(q–b)(c–r), and by doing some simplification, we will find the value of $\dfrac{p}{p-a}+\dfrac{b}{q-b}+\dfrac{r}{r-c}$.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, let us move to question now, it is asked to find the value of $\dfrac{p}{p-a}+\dfrac{b}{q-b}+\dfrac{r}{r-c}$ and in question it is given that $a\ne p$ , $b\ne q$ and $c\ne r$,and $\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=\text{0}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$ , we get
$\left| \begin{matrix}
p-a & b-q & c-c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=\text{0}$
using elementary row operation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$ , we get
$\left| \begin{matrix}
p-a & b-q & 0 \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=\text{0}$
Now, expanding determinant along ${{R}_{1}}$, we get
$(p-a)(r(q-b)-b(c-r))-(b-q)(0-a(c-r))+0=0$
On simplifying, we get
$(p-a)(r(q-b)-b(c-r))+(b-q)a(c-r)=0$
$\Rightarrow r(p-a)(q-b)-b(p-a)(c-r)+a(b-q)(c-r)=0$
Now, dividing the whole equation by ( p –a )( q – b )( c – r ), we get
$\dfrac{r(p-a)(q-b)-b(p-a)(c-r)+a(b-q)(c-r)}{(p-a)(q-b)(c-r)}=0$
On simplifying, we get
$\dfrac{r(p-a)(q-b)}{(p-a)(q-b)(c-r)}-\dfrac{b(p-a)(c-r)}{(p-a)(q-b)(c-r)}+\dfrac{a(b-q)(c-r)}{(p-a)(q-b)(c-r)}=0$
Or, \[\Rightarrow \dfrac{r}{(c-r)}-\dfrac{b}{(q-b)}-\dfrac{a}{(p-a)}=0\]
Re – writing above equation, we get
\[-\dfrac{r}{(r-c)}-\dfrac{b}{(q-b)}-\dfrac{a}{(p-a)}=0\]
Multiplying both sides by -1, we get
\[\dfrac{r}{(r-c)}+\dfrac{b}{(q-b)}+\dfrac{a}{(p-a)}=0\]
Now, adding and subtracting q in numerator of term \[\dfrac{b}{(q-b)}\] and adding and subtracting p in numerator of \[\dfrac{a}{(p-a)}\], we get
\[\dfrac{r}{(r-c)}+\dfrac{b+q-q}{(q-b)}+\dfrac{a+p-p}{(p-a)}=0\]
\[\Rightarrow \dfrac{r}{(r-c)}+\dfrac{b-q}{(q-b)}+\dfrac{q}{(q-b)}+\dfrac{a-p}{(p-a)}+\dfrac{p}{(p-a)}=0\]
On simplification, we get
\[\dfrac{r}{(r-c)}-1+\dfrac{q}{(q-b)}-1+\dfrac{p}{(p-a)}=0\]
On solving, we get
\[\dfrac{r}{(r-c)}+\dfrac{q}{(q-b)}+\dfrac{p}{(p-a)}=2\]
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. Always remember that $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$. In determinant we can use both column and row elementary transformation. Calculation should be done carefully while solving determinant problems.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant and what are its various properties
Now , if we want to calculate the determinant of matrix A of order $3\times 3$, then determinant of matrix A of $3\times 3$ is evaluated as,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If an element of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, let us move to question now, it is asked to find the value of $\dfrac{p}{p-a}+\dfrac{b}{q-b}+\dfrac{r}{r-c}$ and in question it is given that $a\ne p$ , $b\ne q$ and $c\ne r$,and $\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=\text{0}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$ , we get
$\left| \begin{matrix}
p-a & b-q & c-c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=\text{0}$
using elementary row operation ${{R}_{2}}\to {{R}_{2}}-{{R}_{3}}$ , we get
$\left| \begin{matrix}
p-a & b-q & 0 \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=\text{0}$
Now, expanding determinant along ${{R}_{1}}$, we get
$(p-a)(r(q-b)-b(c-r))-(b-q)(0-a(c-r))+0=0$
On simplifying, we get
$(p-a)(r(q-b)-b(c-r))+(b-q)a(c-r)=0$
$\Rightarrow r(p-a)(q-b)-b(p-a)(c-r)+a(b-q)(c-r)=0$
Now, dividing the whole equation by ( p –a )( q – b )( c – r ), we get
$\dfrac{r(p-a)(q-b)-b(p-a)(c-r)+a(b-q)(c-r)}{(p-a)(q-b)(c-r)}=0$
On simplifying, we get
$\dfrac{r(p-a)(q-b)}{(p-a)(q-b)(c-r)}-\dfrac{b(p-a)(c-r)}{(p-a)(q-b)(c-r)}+\dfrac{a(b-q)(c-r)}{(p-a)(q-b)(c-r)}=0$
Or, \[\Rightarrow \dfrac{r}{(c-r)}-\dfrac{b}{(q-b)}-\dfrac{a}{(p-a)}=0\]
Re – writing above equation, we get
\[-\dfrac{r}{(r-c)}-\dfrac{b}{(q-b)}-\dfrac{a}{(p-a)}=0\]
Multiplying both sides by -1, we get
\[\dfrac{r}{(r-c)}+\dfrac{b}{(q-b)}+\dfrac{a}{(p-a)}=0\]
Now, adding and subtracting q in numerator of term \[\dfrac{b}{(q-b)}\] and adding and subtracting p in numerator of \[\dfrac{a}{(p-a)}\], we get
\[\dfrac{r}{(r-c)}+\dfrac{b+q-q}{(q-b)}+\dfrac{a+p-p}{(p-a)}=0\]
\[\Rightarrow \dfrac{r}{(r-c)}+\dfrac{b-q}{(q-b)}+\dfrac{q}{(q-b)}+\dfrac{a-p}{(p-a)}+\dfrac{p}{(p-a)}=0\]
On simplification, we get
\[\dfrac{r}{(r-c)}-1+\dfrac{q}{(q-b)}-1+\dfrac{p}{(p-a)}=0\]
On solving, we get
\[\dfrac{r}{(r-c)}+\dfrac{q}{(q-b)}+\dfrac{p}{(p-a)}=2\]
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. Always remember that $\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$. In determinant we can use both column and row elementary transformation. Calculation should be done carefully while solving determinant problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

