Answer
Verified
501.9k+ views
Hint-This question can be solved by the formula when sin series is in Arithmetic Progression. In A.P two consecutive numbers in a series have common differences.
Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that
$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$
Now we know that for a$n - $ sided polygon,
Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $
Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $
$
= 2n\pi - n\pi + 2\pi \\
= n\pi + 2\pi \\
{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\
$
For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum
Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms
We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$
Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$
Now putting the value of$a$ and$d$ we get,
Sum of sin series when angle is in A.P.
$
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
$
Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$
Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $
Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.
$
{\text{or }}n \in I \\
{\text{or }}n + 2 \in I \\
{\text{or }}\dfrac{{n + 2}}{2} \in I \\
$
Or we can say
${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$
And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$
$
\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
$
Now we know that${\text{sin}}\left( {m\pi } \right) = 0$
$
\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
= 0 \\
$
Hence Proved
Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.
Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that
$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$
Now we know that for a$n - $ sided polygon,
Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $
Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $
$
= 2n\pi - n\pi + 2\pi \\
= n\pi + 2\pi \\
{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\
$
For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum
Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms
We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$
Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$
Now putting the value of$a$ and$d$ we get,
Sum of sin series when angle is in A.P.
$
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
$
Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$
Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $
Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.
$
{\text{or }}n \in I \\
{\text{or }}n + 2 \in I \\
{\text{or }}\dfrac{{n + 2}}{2} \in I \\
$
Or we can say
${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$
And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$
$
\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
$
Now we know that${\text{sin}}\left( {m\pi } \right) = 0$
$
\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
= 0 \\
$
Hence Proved
Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE