Answer
Verified
498.3k+ views
Hint: For a function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]. If the discriminant of the function is greater than zero the function has two real and distinct values.
Complete step-by-step answer:
Let the given function be \[f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right) - 1 = 0\] which can be written as \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\]
We know that for the function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]
So, discriminant of \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\] is
\[
D = {\left[ { - \left( {a + b} \right)} \right]^2} - 4(ab - 1) \\
D = {a^2} + {b^2} + 2ab - 4ab + 4 \\
D = {a^2} + {b^2} - 2ab + 4 \\
D = {\left( {a - b} \right)^2} + 4 > 0 \\
\]
Since the discriminant is greater than zero, it has two real roots.
Consider,
\[f\left( a \right) = \left( {a - a} \right)\left( {a - b} \right) - 1 = - 1\]
\[f\left( b \right) = \left( {b - a} \right)\left( {b - b} \right) - 1 = - 1\]
But \[b > a\] i.e., \[a\] and \[b\] are distinct as coefficient of \[{x^2}\] is positive (it is 1) , minima of \[f\left( x \right)\] is between \[a\] and \[b\].
Hence one root will lie in interval \[\left( { - \infty ,a} \right)\] and another root will be in interval \[\left( {b, + \infty } \right)\].
Thus, the correct option is D. one root in \[\left( { - \infty ,a} \right)\] and other in \[\left( {b, + \infty } \right)\]
Note: If the discriminant of the function is less than zero then the function has imaginary roots and if the function has discriminant equal to zero then the roots are real and equal.
Complete step-by-step answer:
Let the given function be \[f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right) - 1 = 0\] which can be written as \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\]
We know that for the function \[f\left( x \right) = a{x^2} + bx + c = 0\] the discriminant is given by \[D = {b^2} - 4ac\]
So, discriminant of \[f\left( x \right) = {x^2} - (a + b)x + ab - 1 = 0\] is
\[
D = {\left[ { - \left( {a + b} \right)} \right]^2} - 4(ab - 1) \\
D = {a^2} + {b^2} + 2ab - 4ab + 4 \\
D = {a^2} + {b^2} - 2ab + 4 \\
D = {\left( {a - b} \right)^2} + 4 > 0 \\
\]
Since the discriminant is greater than zero, it has two real roots.
Consider,
\[f\left( a \right) = \left( {a - a} \right)\left( {a - b} \right) - 1 = - 1\]
\[f\left( b \right) = \left( {b - a} \right)\left( {b - b} \right) - 1 = - 1\]
But \[b > a\] i.e., \[a\] and \[b\] are distinct as coefficient of \[{x^2}\] is positive (it is 1) , minima of \[f\left( x \right)\] is between \[a\] and \[b\].
Hence one root will lie in interval \[\left( { - \infty ,a} \right)\] and another root will be in interval \[\left( {b, + \infty } \right)\].
Thus, the correct option is D. one root in \[\left( { - \infty ,a} \right)\] and other in \[\left( {b, + \infty } \right)\]
Note: If the discriminant of the function is less than zero then the function has imaginary roots and if the function has discriminant equal to zero then the roots are real and equal.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE