Answer
Verified
503.7k+ views
Hint: This question can be solved by comparing the general value of $\bar z$ and $\bar z $when it is in the third quadrant.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Now we know that the general value of $z = x + iy$
And $\overline z = x - iy - - - - - \left( i \right)$
Now given that $\bar z$ lies in the third quadrant.
$ \Rightarrow \overline z = - x - iy - - - - - - \left( {ii} \right)$
Where the negative sign indicates that both the real part and imaginary part lies in the third quadrant.
On comparing $\left( i \right)$ and$\left( {ii} \right)$we get,
$x = - x$
Also we know that the general value of $z = x + iy$
Putting the value of $x$ in general value of $z$ we get,
$z = - x + iy$
On analyzing the above equation we can say that $z$ is in the Second quadrant because here $\left( x \right)$ coordinate is negative and$\left( y \right)$ coordinate is positive.
$\therefore $ The correct answer is $\left( B \right)$.
Note: Whenever we face such type of questions the key concept is that we should compare the given value of $\bar z$and general value of $\bar z$ so we can compare both the equations and we get the value of $x$ and we also know the general value of $z$ and on putting the value of $x$ in it we get the position of $z$.
Recently Updated Pages
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
What happens to the gravitational force between two class 11 physics NEET
Let x y be the real number satisfying the equation class 11 maths JEE_Main
The locus of the centre of the circles which cut the class 11 maths JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
To break a wire a stress of 2106 Nm2 is required If class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE