Answer
Verified
459k+ views
Hint: We can write the given summation as $3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We find the binomial expansion of $A={{\left( 1+x \right)}^{n}},B={{\left( 1+\dfrac{1}{x} \right)}^{n}}$ and then differentiate $A$to get$D$. We multiply respective sides of $A,B$ and equate the constant term to get$\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We multiply respective sides of $A,B$ and equate coefficient of ${{x}^{-1}}$ to get$\sum\limits_{n=0}^{n}{nC_{n}^{2}}$.\[\]
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE