
If C denotes the binomial coefficient $^{n}{{C}_{r}}$then $\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=$\[\]
A.$\left( 3n-2 \right)\left( ^{2n}{{C}_{n}} \right)$\[\]
B. $\left( \dfrac{3n-2}{2} \right)\left( ^{2n}{{C}_{n}} \right)$\[\]
C. ${{\left( 5+3n \right)}^{2n}}\left( ^{2n}{{C}_{n}} \right)$\[\]
D. $\left( \dfrac{3n-5}{2} \right)\left( ^{2n}{{C}_{n}} \right)$\[\]
Answer
483.3k+ views
Hint: We can write the given summation as $3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We find the binomial expansion of $A={{\left( 1+x \right)}^{n}},B={{\left( 1+\dfrac{1}{x} \right)}^{n}}$ and then differentiate $A$to get$D$. We multiply respective sides of $A,B$ and equate the constant term to get$\sum\limits_{n=0}^{n}{C_{n}^{2}}$. We multiply respective sides of $A,B$ and equate coefficient of ${{x}^{-1}}$ to get$\sum\limits_{n=0}^{n}{nC_{n}^{2}}$.\[\]
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Complete step-by-step solution
The given summation is
\[\left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}\]
We can write the above expression as a summation of the general term $\left( 3n-1 \right)C_{n}^{2}$ where $n=0,1,2,...n$. We have
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\sum\limits_{n=0}^{n}{\left( 3n-1 \right)C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}}.....(1) \\
\end{align}\]
We know that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is,
\[{{\left( 1+x \right)}^{n}}={{C}_{0}}+{{C}_{1}}x+{{C}_{2}}{{x}^{2}}...+{{C}_{n}}{{x}^{n}}.....(2)\]
We know that the binomial of coefficient of ${{x}^{k}},k\in \left\{ 0,1,2,...n \right\}$ in above expression is${}^{n}{{C}_{k}}$. Let us substitute $\dfrac{1}{x}$ instead of $x$ to have,
\[{{\left( 1+\dfrac{1}{x} \right)}^{n}}={{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+{{C}_{2}}\dfrac{1}{{{x}^{2}}}...+{{C}_{n}}\dfrac{1}{{{x}^{n}}}....(3)\]
We multiply equation (2) and (3) to have,
\[\begin{align}
& {{\left( 1+x \right)}^{n}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
& \Rightarrow \dfrac{{{\left( 1+x \right)}^{2n}}}{{{x}^{n}}}=C_{0}^{2}+{{C}_{0}}\left( x+\dfrac{1}{x} \right)+...+{{C}_{1}}{{C}_{0}}x+C_{1}^{2}... \\
\end{align}\]
We observe that the constant term in the in the right hand side of the above equation is$C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}$. The coefficient of ${{x}^{n}}$in the numerator ${{\left( 1+x \right)}^{2n}}$ of the fraction at the left hand side is $^{2n}{{C}_{n}}$. If we divide the term with coefficient of ${{x}^{n}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the constant term at the left hand side which is $^{2n}{{C}_{n}}$. So we equate the coefficients of both side and have,
\[{}^{2n}{{C}_{n}}=C_{0}^{2}+C_{1}^{2}+...+C_{n}^{2}=\sum\limits_{n=0}^{n}{C_{n}^{2}}....(4)\]
Let us differentiate equation (2) with respect to $x$ and get
\[n{{\left( 1+x \right)}^{n-1}}=0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}}.....(5)\]
We multiply respective sides of equation (3) and (5) to have,
\[\begin{align}
& n{{\left( 1+x \right)}^{n-1}}{{\left( 1+\dfrac{1}{x} \right)}^{n}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
& \Rightarrow \dfrac{n{{\left( 1+x \right)}^{2n-1}}}{{{x}^{n}}}=\left( 0\cdot {{C}_{0}}+1\cdot {{C}_{1}}+2{{C}_{2}}x...+n{{C}_{n}}{{x}^{n-1}} \right)\left( {{C}_{0}}+{{C}_{1}}\dfrac{1}{x}+...+{{C}_{n}}\dfrac{1}{{{x}^{n}}} \right) \\
\end{align}\]
We observe that the coefficient of $\dfrac{1}{x}={{x}^{-1}}$ in the in the right hand side of the above equation is $0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}$. The coefficient of ${{x}^{n-1}}$in the numerator ${{\left( 1+x \right)}^{2n-1}}$ of the fraction at the left hand side is $^{2n-1}{{C}_{n-1}}$. If we divide the term with coefficient of ${{x}^{n-1}}$ by ${{x}^{n}}$ as it exists in the denominator we will have the coefficient of ${{x}^{-1}}$ at the left hand side which is ${n^{2n - 1}}{C_{n - 1}}$. We equate the coefficients of both side and have,
\[\begin{align}
& n{}^{2n-1}{{C}_{n-1}}=0\cdot C_{0}^{2}+1\cdot C_{1}^{2}+2C_{2}^{2}...+nC_{n}^{2}=\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3n{}^{2n-1}{{C}_{n-1}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}} \\
& \Rightarrow 3\dfrac{n}{2}{}^{2n}{{C}_{n}}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}\left( \because {}^{2n}{{C}_{n}}=2{}^{2n-1}{{C}_{n-1}} \right)...(6) \\
\end{align}\]
We put the values obtained the values from equation (4) and (6) in equation (1) to have,
\[\begin{align}
& \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\sum\limits_{n=0}^{n}{nC_{n}^{2}}-\sum\limits_{n=0}^{n}{C_{n}^{2}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=3\dfrac{n}{2}{}^{2n}{{C}_{n}}-{}^{2n}{{C}_{n}} \\
& \Rightarrow \left( -1 \right)C_{0}^{2}+2C_{1}^{2}+5C_{2}^{2}+...+\left( 3n-1 \right)C_{n}^{2}=\left( \dfrac{3n-1}{2} \right){}^{2n}{{C}_{n}} \\
\end{align}\]
So the correct option is B.
Note: We also note that that coefficient of $k$ and $n-k$ are same in the binomial expansion of ${{\left( 1+x \right)}^{n}}$. We also note that the binomial expansion of ${{\left( 1+x \right)}^{n}}$ is specialized form of binomial expansion of ${{\left( x+y \right)}^{n}}$ which is given as$\left( ^{n}{{C}_{0}} \right){{x}^{n}}{{y}^{0}}+\left( ^{n}{{C}_{1}} \right){{x}^{n-1}}y+...+\left( ^{n}{{C}_{1}} \right){{x}^{0}}{{y}^{n}}$ where $n$ is always a non-negative integers and $x,y$ are real numbers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
