Answer
Verified
451.2k+ views
Hint: We can find the reduction potential of given electrodes with respect to calomel electrodes by following formula.
\[E = {E^ \circ } - E_{calomel}^ \circ {\text{ }}\]
Complete step by step solution:
SHE stands for standard hydrogen electrode. We will find the potentials of given electrodes with reference to calomel electrodes.
We are given that standard reduction potentials of Calomel, Nickel and Gold electrodes is -0.28, 1.43 and 0.35 V respectively. So,
\[E_{Calomel}^ \circ = - 0.28V \\
E_{Nickel}^ \circ = 1.43V \\
E_{Gold}^ \circ = 0.35V \\
\]
We know that standard reduction potentials of the electrodes are taken with respect to the hydrogen electrode or SHE. We know that the standard reduction of hydrogen electrode is considered 0 V.
We can find the reduction potential of given electrodes with respect to calomel electrodes by following the formula.
\[E = {E^ \circ } - E_{calomel}^ \circ {\text{ }}..{\text{(1)}}\]
For Nickel electrode, we can write equation (1) as
\[{E_{Nickel}} = E_{Nickel}^ \circ - E_{calomel}^ \circ \]
So, \[{E_{Nickel}} = 1.43 - ( - 0.28) = 1.71V\]
Now, the potential obtained is the reduction potential of the electrode because the standard potentials are used here which are reduction potentials. So, we can simply change the sign of the reduction potential of the electrode to obtain oxidation potential of the given electrode.
So, oxidation potential of the Nickel electrode = -1.71 V
For Gold electrode, we can write the equation (1) as
\[{E_{Gold}} = E_{Gold}^ \circ - E_{calomel}^ \circ \]
Thus, we can write that \[{E_{Gold}} = 0.35 - ( - 0.28) = 0.63V\]
- This is the reduction potential. So, oxidation potential of the electrode = -0.63 V
For SHE electrode, we can write equation (1) as
\[{E_{SHE}} = E_{SHE}^ \circ - E_{calomel}^ \circ \]
So, \[{E_{SHE}} = 0 - ( - 0.28)\] = 0.28 V
- So, the oxidation potential of the SHE electrode = -0.28 V.
Note: We can obtain reduction potential from the oxidation potential or oxidation potential from the reduction potential by simply changing the sign of the potential. The reduction potential of the cell is considered as the standard potential of the cell.
\[E = {E^ \circ } - E_{calomel}^ \circ {\text{ }}\]
Complete step by step solution:
SHE stands for standard hydrogen electrode. We will find the potentials of given electrodes with reference to calomel electrodes.
We are given that standard reduction potentials of Calomel, Nickel and Gold electrodes is -0.28, 1.43 and 0.35 V respectively. So,
\[E_{Calomel}^ \circ = - 0.28V \\
E_{Nickel}^ \circ = 1.43V \\
E_{Gold}^ \circ = 0.35V \\
\]
We know that standard reduction potentials of the electrodes are taken with respect to the hydrogen electrode or SHE. We know that the standard reduction of hydrogen electrode is considered 0 V.
We can find the reduction potential of given electrodes with respect to calomel electrodes by following the formula.
\[E = {E^ \circ } - E_{calomel}^ \circ {\text{ }}..{\text{(1)}}\]
For Nickel electrode, we can write equation (1) as
\[{E_{Nickel}} = E_{Nickel}^ \circ - E_{calomel}^ \circ \]
So, \[{E_{Nickel}} = 1.43 - ( - 0.28) = 1.71V\]
Now, the potential obtained is the reduction potential of the electrode because the standard potentials are used here which are reduction potentials. So, we can simply change the sign of the reduction potential of the electrode to obtain oxidation potential of the given electrode.
So, oxidation potential of the Nickel electrode = -1.71 V
For Gold electrode, we can write the equation (1) as
\[{E_{Gold}} = E_{Gold}^ \circ - E_{calomel}^ \circ \]
Thus, we can write that \[{E_{Gold}} = 0.35 - ( - 0.28) = 0.63V\]
- This is the reduction potential. So, oxidation potential of the electrode = -0.63 V
For SHE electrode, we can write equation (1) as
\[{E_{SHE}} = E_{SHE}^ \circ - E_{calomel}^ \circ \]
So, \[{E_{SHE}} = 0 - ( - 0.28)\] = 0.28 V
- So, the oxidation potential of the SHE electrode = -0.28 V.
Note: We can obtain reduction potential from the oxidation potential or oxidation potential from the reduction potential by simply changing the sign of the potential. The reduction potential of the cell is considered as the standard potential of the cell.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE