
If ${{\cos }^{-1}}x-{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $ then $4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}$ is equal to?
$\begin{align}
& \left( A \right)4{{\sin }^{2}}\alpha \\
& \left( B \right)-4{{\sin }^{2}}\alpha \\
& \left( C \right)2\sin 2\alpha \\
& \left( D \right)4 \\
\end{align}$
Answer
454.5k+ views
Hint: We first apply the formula of ${{\cos }^{-1}}x+{{\cos }^{-1}}y$ on the left hand side of the given equation. We then simplify the equation, and square it. Rearranging the terms and applying some basic trigonometric formulae, we get $\left( A \right)$ as the correct option.
Complete step by step answer:
The given equation is
${{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $
We know the formula that ${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)$ . Thus, applying this formula in the above equation the equation thus becomes,
$\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha $
Taking $\text{cosine}$ on both sides on the above equation, we get,
$\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha $
We know the simple formula that $\cos \left( {{\cos }^{-1}}x \right)=\cos x$ . So, applying this in the above equation, the equation thus becomes,
$\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha $
Simplifying the above equation, we get,
\[\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha \]
Further simplifying the above equation, the equation thus becomes,
\[\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha \]
Multiplying both sides of the above equation by $2$ , we get,
\[\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha \]
Taking $\cos \alpha $ to the left hand side of the above equation and \[\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\] to the right hand side of the above equation, we get,
\[\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\]
Squaring both sides of the above equation, the equation thus becomes,
\[\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}\]
Evaluating the above equation, we get
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)\]
Opening the brackets in the above equation, we get,
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}\]
Subtracting \[{{x}^{2}}{{y}^{2}}\] from both sides of the above equation, we get,
\[\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}\]
Bringing the terms $4{{x}^{2}},{{y}^{2}}$ to the left hand side of the above equation and the term \[4{{\cos }^{2}}\alpha \] to the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha \]
Taking $4$ common in the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)\]
We know that \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] . Thus, applying this formula in the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha \]
Rearranging the terms of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha \]
This is nothing but the thing that we have to prove. Therefore, we can conclude that \[4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}\] is equal to \[4{{\sin }^{2}}\alpha \] which is option $\left( A \right)$ .
Note: We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for $x,y,\alpha $ and find out which of the following options gives the correct answer. Let’s take $x=0,y=1$ . Then, $\alpha $ becomes ${{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6}$ . The expression becomes $4{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1$ . Out of the following options, only $\left( A \right)$ satisfies by putting $\alpha =\dfrac{\pi }{6}$.
Complete step by step answer:
The given equation is
${{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $
We know the formula that ${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)$ . Thus, applying this formula in the above equation the equation thus becomes,
$\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha $
Taking $\text{cosine}$ on both sides on the above equation, we get,
$\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha $
We know the simple formula that $\cos \left( {{\cos }^{-1}}x \right)=\cos x$ . So, applying this in the above equation, the equation thus becomes,
$\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha $
Simplifying the above equation, we get,
\[\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha \]
Further simplifying the above equation, the equation thus becomes,
\[\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha \]
Multiplying both sides of the above equation by $2$ , we get,
\[\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha \]
Taking $\cos \alpha $ to the left hand side of the above equation and \[\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\] to the right hand side of the above equation, we get,
\[\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\]
Squaring both sides of the above equation, the equation thus becomes,
\[\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}\]
Evaluating the above equation, we get
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)\]
Opening the brackets in the above equation, we get,
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}\]
Subtracting \[{{x}^{2}}{{y}^{2}}\] from both sides of the above equation, we get,
\[\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}\]
Bringing the terms $4{{x}^{2}},{{y}^{2}}$ to the left hand side of the above equation and the term \[4{{\cos }^{2}}\alpha \] to the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha \]
Taking $4$ common in the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)\]
We know that \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] . Thus, applying this formula in the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha \]
Rearranging the terms of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha \]
This is nothing but the thing that we have to prove. Therefore, we can conclude that \[4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}\] is equal to \[4{{\sin }^{2}}\alpha \] which is option $\left( A \right)$ .
Note: We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for $x,y,\alpha $ and find out which of the following options gives the correct answer. Let’s take $x=0,y=1$ . Then, $\alpha $ becomes ${{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6}$ . The expression becomes $4{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1$ . Out of the following options, only $\left( A \right)$ satisfies by putting $\alpha =\dfrac{\pi }{6}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
