Answer
Verified
431.4k+ views
Hint: We first apply the formula of ${{\cos }^{-1}}x+{{\cos }^{-1}}y$ on the left hand side of the given equation. We then simplify the equation, and square it. Rearranging the terms and applying some basic trigonometric formulae, we get $\left( A \right)$ as the correct option.
Complete step by step answer:
The given equation is
${{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $
We know the formula that ${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)$ . Thus, applying this formula in the above equation the equation thus becomes,
$\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha $
Taking $\text{cosine}$ on both sides on the above equation, we get,
$\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha $
We know the simple formula that $\cos \left( {{\cos }^{-1}}x \right)=\cos x$ . So, applying this in the above equation, the equation thus becomes,
$\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha $
Simplifying the above equation, we get,
\[\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha \]
Further simplifying the above equation, the equation thus becomes,
\[\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha \]
Multiplying both sides of the above equation by $2$ , we get,
\[\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha \]
Taking $\cos \alpha $ to the left hand side of the above equation and \[\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\] to the right hand side of the above equation, we get,
\[\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\]
Squaring both sides of the above equation, the equation thus becomes,
\[\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}\]
Evaluating the above equation, we get
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)\]
Opening the brackets in the above equation, we get,
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}\]
Subtracting \[{{x}^{2}}{{y}^{2}}\] from both sides of the above equation, we get,
\[\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}\]
Bringing the terms $4{{x}^{2}},{{y}^{2}}$ to the left hand side of the above equation and the term \[4{{\cos }^{2}}\alpha \] to the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha \]
Taking $4$ common in the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)\]
We know that \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] . Thus, applying this formula in the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha \]
Rearranging the terms of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha \]
This is nothing but the thing that we have to prove. Therefore, we can conclude that \[4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}\] is equal to \[4{{\sin }^{2}}\alpha \] which is option $\left( A \right)$ .
Note: We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for $x,y,\alpha $ and find out which of the following options gives the correct answer. Let’s take $x=0,y=1$ . Then, $\alpha $ becomes ${{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6}$ . The expression becomes $4{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1$ . Out of the following options, only $\left( A \right)$ satisfies by putting $\alpha =\dfrac{\pi }{6}$.
Complete step by step answer:
The given equation is
${{\cos }^{-1}}x+{{\cos }^{-1}}\left( \dfrac{y}{2} \right)=\alpha $
We know the formula that ${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)$ . Thus, applying this formula in the above equation the equation thus becomes,
$\Rightarrow {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right)=\alpha $
Taking $\text{cosine}$ on both sides on the above equation, we get,
$\Rightarrow \cos \left( {{\cos }^{-1}}\left( x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)} \right) \right)=\cos \alpha $
We know the simple formula that $\cos \left( {{\cos }^{-1}}x \right)=\cos x$ . So, applying this in the above equation, the equation thus becomes,
$\Rightarrow x\left( \dfrac{y}{2} \right)+\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{\left( \dfrac{y}{2} \right)}^{2}} \right)}=\cos \alpha $
Simplifying the above equation, we get,
\[\Rightarrow \dfrac{xy}{2}+\sqrt{\left( 1-{{x}^{2}} \right)\left( \dfrac{4-{{y}^{2}}}{4} \right)}=\cos \alpha \]
Further simplifying the above equation, the equation thus becomes,
\[\Rightarrow \dfrac{xy}{2}+\dfrac{\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}}{2}=\cos \alpha \]
Multiplying both sides of the above equation by $2$ , we get,
\[\Rightarrow xy+\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}=2\cos \alpha \]
Taking $\cos \alpha $ to the left hand side of the above equation and \[\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\] to the right hand side of the above equation, we get,
\[\Rightarrow xy-2\cos \alpha =-\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)}\]
Squaring both sides of the above equation, the equation thus becomes,
\[\Rightarrow {{\left( xy-2\cos \alpha \right)}^{2}}={{\left( -\sqrt{\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)} \right)}^{2}}\]
Evaluating the above equation, we get
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =\left( 1-{{x}^{2}} \right)\left( 4-{{y}^{2}} \right)\]
Opening the brackets in the above equation, we get,
\[\Rightarrow {{x}^{2}}{{y}^{2}}-4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}\]
Subtracting \[{{x}^{2}}{{y}^{2}}\] from both sides of the above equation, we get,
\[\Rightarrow -4xy\cos \alpha +4{{\cos }^{2}}\alpha =4-4{{x}^{2}}-{{y}^{2}}\]
Bringing the terms $4{{x}^{2}},{{y}^{2}}$ to the left hand side of the above equation and the term \[4{{\cos }^{2}}\alpha \] to the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4-4{{\cos }^{2}}\alpha \]
Taking $4$ common in the right hand side of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4\left( 1-{{\cos }^{2}}\alpha \right)\]
We know that \[1-{{\cos }^{2}}\alpha ={{\sin }^{2}}\alpha \] . Thus, applying this formula in the above equation, we get,
\[\Rightarrow 4{{x}^{2}}+{{y}^{2}}-4xy\cos \alpha =4{{\sin }^{2}}\alpha \]
Rearranging the terms of the above equation, we get,
\[\Rightarrow 4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}=4{{\sin }^{2}}\alpha \]
This is nothing but the thing that we have to prove. Therefore, we can conclude that \[4{{x}^{2}}-4xy\cos \alpha +{{y}^{2}}\] is equal to \[4{{\sin }^{2}}\alpha \] which is option $\left( A \right)$ .
Note: We must be very careful while carrying out the square as this expression deals with a little complex terms and students are prone to make mistakes here. This problem can also be solved by taking some values for $x,y,\alpha $ and find out which of the following options gives the correct answer. Let’s take $x=0,y=1$ . Then, $\alpha $ becomes ${{\cos }^{-1}}0-{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-\dfrac{\pi }{3}=\dfrac{\pi }{6}$ . The expression becomes $4{{\left( 0 \right)}^{2}}-4\left( 0 \right)\left( 1 \right)\cos \left( \dfrac{\pi }{6} \right)+{{\left( 1 \right)}^{2}}=1$ . Out of the following options, only $\left( A \right)$ satisfies by putting $\alpha =\dfrac{\pi }{6}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE