Answer
Verified
429k+ views
Hint:As we know that the above given question is related to trigonometric expression, sine and cosine are trigonometric ratios. Here we have to find the value using trigonometric identity or formulae. We know that any angle is acute only if its value is less than ${90^ \circ }$. WE will use this basic formula to find the value of required expression.
Complete step by step solution:
As per the given question we have $\cos 2\theta = \sin 4\theta $, and we have to find the value of $\theta $, also that $2\theta ,4\theta $ are acute angles.
We know the formula of any trigonometric acute angle can be written as : $\cos \theta = \sin (90 - \theta )$. We can use this for $\cos 2\theta $ and it can be written as $\cos 2\theta = \sin (90 - 2\theta )$. So by substituting the value we get: $\sin (90 - 2\theta ) = 1 \Rightarrow \sin 4\theta $.
We can write it as $90 - 2\theta = 4\theta $, as the sine on both sides get cancelled. Now we solve for $\theta $, $90 = 2\theta + 4\theta \Rightarrow 6\theta = 90$.
It gives us $\theta = \dfrac{{90}}{6} = {15^ \circ }$.
Hence the required value of $\theta $ is ${15^ \circ }$.
Note: Before solving such a question we should be fully aware of the trigonometric identities, ratios and their formulas. The important step is to determine the value of $\theta $, and it is given that the value is an acute angle, so our answer should always be less than ${90^ \circ }$. We should remember them as we need to use them in solving questions like this. We should be careful while doing the calculation because if there is mistake in calculation, we might get the wrong answer.
Complete step by step solution:
As per the given question we have $\cos 2\theta = \sin 4\theta $, and we have to find the value of $\theta $, also that $2\theta ,4\theta $ are acute angles.
We know the formula of any trigonometric acute angle can be written as : $\cos \theta = \sin (90 - \theta )$. We can use this for $\cos 2\theta $ and it can be written as $\cos 2\theta = \sin (90 - 2\theta )$. So by substituting the value we get: $\sin (90 - 2\theta ) = 1 \Rightarrow \sin 4\theta $.
We can write it as $90 - 2\theta = 4\theta $, as the sine on both sides get cancelled. Now we solve for $\theta $, $90 = 2\theta + 4\theta \Rightarrow 6\theta = 90$.
It gives us $\theta = \dfrac{{90}}{6} = {15^ \circ }$.
Hence the required value of $\theta $ is ${15^ \circ }$.
Note: Before solving such a question we should be fully aware of the trigonometric identities, ratios and their formulas. The important step is to determine the value of $\theta $, and it is given that the value is an acute angle, so our answer should always be less than ${90^ \circ }$. We should remember them as we need to use them in solving questions like this. We should be careful while doing the calculation because if there is mistake in calculation, we might get the wrong answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE