
If $ \cos \dfrac{\pi }{{33}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos = \dfrac{1}{m} $ , then m =?
Answer
606.6k+ views
Hint: Generally these types of question can be simplified easily but since in this question it is difficult to simplify it so here we can multiply the equation by \[\dfrac{{2\sin \dfrac{\pi }{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\] then apply the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the equation to find the value of m.
Complete step-by-step answer:
Let \[\cos \dfrac{\pi }{{33}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] take as equation 1
Now let multiply equation 1 by \[\dfrac{{2\sin \dfrac{\pi }{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\]
$ \Rightarrow $ \[\cos \dfrac{\pi }{{33}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] \[ \times \] \[\dfrac{{2\sin \dfrac{\pi }{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\] =\[\dfrac{{\sin \dfrac{{2\pi }}{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] by the formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\dfrac{{\sin \dfrac{{2\pi }}{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] (Equation 2)
Now multiplying and dividing the equation 2 by $ {2^4} $
\[\dfrac{{{2^4}\sin \dfrac{{2\pi }}{{33}}}}{{{2^5}\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] (Equation 3)
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] 4 times to simplify the equation into simplest form i.e.
$ \Rightarrow $ $ \dfrac{{\sin \dfrac{{32\pi }}{{33}}}}{{32\sin \dfrac{\pi }{{33}}}} $ = $ \dfrac{{\sin (\pi - \dfrac{\pi }{{33}})}}{{32\sin \dfrac{\pi }{{33}}}} $
$ \Rightarrow $ \[\dfrac{{\sin \dfrac{\pi }{{33}}}}{{32\sin \dfrac{\pi }{{33}}}} = \dfrac{1}{{32}}\] By the formula of $ \sin (\pi - \theta ) = \sin \theta $
So the value of $ \dfrac{1}{m} = \dfrac{1}{{32}} $ .
Note: In the solution we have used the term trigonometric identities are equalities that involve trigonometric functions like $ \sin \theta $ , $ \cos \theta $ , $ \tan \theta $ , etc. If we explain this term as geometrically, these are identities involving certain functions of one or more angles and they are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. There is an important application i.e. the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
Complete step-by-step answer:
Let \[\cos \dfrac{\pi }{{33}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] take as equation 1
Now let multiply equation 1 by \[\dfrac{{2\sin \dfrac{\pi }{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\]
$ \Rightarrow $ \[\cos \dfrac{\pi }{{33}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] \[ \times \] \[\dfrac{{2\sin \dfrac{\pi }{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\] =\[\dfrac{{\sin \dfrac{{2\pi }}{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] by the formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\dfrac{{\sin \dfrac{{2\pi }}{{33}}}}{{2\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] (Equation 2)
Now multiplying and dividing the equation 2 by $ {2^4} $
\[\dfrac{{{2^4}\sin \dfrac{{2\pi }}{{33}}}}{{{2^5}\sin \dfrac{\pi }{{33}}}}\cos \dfrac{{2\pi }}{{33}}\cos \dfrac{{4\pi }}{{33}}\cos \dfrac{{8\pi }}{{33}}\cos \dfrac{{16\pi }}{{33}}\cos \] (Equation 3)
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] 4 times to simplify the equation into simplest form i.e.
$ \Rightarrow $ $ \dfrac{{\sin \dfrac{{32\pi }}{{33}}}}{{32\sin \dfrac{\pi }{{33}}}} $ = $ \dfrac{{\sin (\pi - \dfrac{\pi }{{33}})}}{{32\sin \dfrac{\pi }{{33}}}} $
$ \Rightarrow $ \[\dfrac{{\sin \dfrac{\pi }{{33}}}}{{32\sin \dfrac{\pi }{{33}}}} = \dfrac{1}{{32}}\] By the formula of $ \sin (\pi - \theta ) = \sin \theta $
So the value of $ \dfrac{1}{m} = \dfrac{1}{{32}} $ .
Note: In the solution we have used the term trigonometric identities are equalities that involve trigonometric functions like $ \sin \theta $ , $ \cos \theta $ , $ \tan \theta $ , etc. If we explain this term as geometrically, these are identities involving certain functions of one or more angles and they are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. There is an important application i.e. the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

