
If \[\cos x = - \dfrac{4}{5}\] , where $x \in \left[ {0,\pi } \right]$ , then the value of $\cos \left( {\dfrac{x}{2}} \right)$ is equal to:
$
\left( a \right)\dfrac{1}{{10}} \\
\left( b \right)\dfrac{2}{5} \\
\left( c \right)\dfrac{1}{{\sqrt {10} }} \\
\left( d \right) - \dfrac{2}{5} \\
\left( e \right) - \dfrac{1}{{\sqrt {10} }} \\
$
Answer
621k+ views
Hint: Use double angle identities of trigonometry . We know this relation $\cos \left( {2x} \right) = 2{\cos ^2}\left( x \right) - 1$ and also we can write like $\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Complete step-by-step answer:
Given, \[\cos x = - \dfrac{4}{5},x \in \left[ {0,\pi } \right]\]
Now, we use the double angle identity of trigonometry.
$\cos \left( x \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$
Use the value of $\cos x$ in above identity.
$
\Rightarrow - \dfrac{4}{5} = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 - \dfrac{4}{5} \\
\Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{5} \\
\Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{1}{{10}} \\
$
Take square root
$ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \pm \dfrac{1}{{\sqrt {10} }}$
We can see two values of $\cos \left( {\dfrac{x}{2}} \right)$ but we have to choose only one value. So, we use $x \in \left[ {0,\pi } \right]$ .
Given, $x \in \left[ {0,\pi } \right]$
$
0 \leqslant x \leqslant \pi \\
\Rightarrow 0 \leqslant \dfrac{x}{2} \leqslant \dfrac{\pi }{2} \\
$
So, $\dfrac{x}{2} \in \left[ {0,\dfrac{\pi }{2}} \right]$
We know the graph of cosine is positive from 0 to $\dfrac{\pi }{2}$ .
Now, the value of $\cos \left( {\dfrac{x}{2}} \right) = \dfrac{1}{{\sqrt {10} }}$ .
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. First we use trigonometric identities and after solving we get two answers one is positive and other is negative. So, for the correct answer we use range of x and observe whether the graph of that function is positive or negative on range of x.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

