If $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, prove that $\dfrac{{\left( {b + c} \right)}}{a}$, $\dfrac{{\left( {c + a} \right)}}{b}$, $\dfrac{{\left( {a + b} \right)}}{c}$ are in AP.
Answer
Verified
468k+ views
Hint: As, it is given in the question that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, it is known that whenever we add or subtract or multiply or divide any numbers which are in AP by any particular number then still those numbers will be in AP. So, first multiply these numbers with $a + b + c$, and after that subtract 1 from the numbers, then the numbers will come out still in AP.
Complete step-by-step solution:
Given, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, and we need to prove $\dfrac{{\left( {b + c} \right)}}{a}$, $\dfrac{{\left( {c + a} \right)}}{b}$, $\dfrac{{\left( {a + b} \right)}}{c}$ are in AP.
It is known that, if we multiply or divide the numbers which are in AP with a particular number, then still that number will be in AP.
Now, multiply $a + b + c$ to all the three numbers.
So, the numbers will become, $\dfrac{{a + b + c}}{a}$, $\dfrac{{a + b + c}}{b}$, $\dfrac{{a + b + c}}{c}$.
If we subtract or add some particular number from the numbers which are in AP, still these numbers will be in AP.
Now, subtract 1 from all these three numbers.
$\Rightarrow\dfrac{{a + b + c}}{a} - 1$, $\dfrac{{a + b + c}}{b} - 1$, $\dfrac{{a + b + c}}{c} - 1$, now simplify the numbers.
$\Rightarrow \dfrac{{a + b + c}}{a} - 1 = \dfrac{{a + b + c - a}}{a} = \dfrac{{b + c}}{a}$, $\dfrac{{a + b + c}}{b} - 1 = \dfrac{{a + b + c - b}}{b} = \dfrac{{a + c}}{b}$, $\dfrac{{a + b + c}}{c} - 1 = \dfrac{{a + b + c - c}}{c} = \dfrac{{a + b}}{c}$
Therefore, $\dfrac{{b + c}}{a}$, $\dfrac{{a + c}}{b}$, $\dfrac{{a + b}}{c}$ are in AP.
Note:
An arithmetic progression or arithmetic sequence the numbers are in such a sequence that the difference between consecutive numbers are the same.
Whenever we add or subtract any particular number with the numbers which are in AP, will still be in AP.
Whenever we multiply or divide any particular number with the numbers which are in AP, will still be in AP.The numbers in an AP differ by common difference among them.
Complete step-by-step solution:
Given, $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in AP, and we need to prove $\dfrac{{\left( {b + c} \right)}}{a}$, $\dfrac{{\left( {c + a} \right)}}{b}$, $\dfrac{{\left( {a + b} \right)}}{c}$ are in AP.
It is known that, if we multiply or divide the numbers which are in AP with a particular number, then still that number will be in AP.
Now, multiply $a + b + c$ to all the three numbers.
So, the numbers will become, $\dfrac{{a + b + c}}{a}$, $\dfrac{{a + b + c}}{b}$, $\dfrac{{a + b + c}}{c}$.
If we subtract or add some particular number from the numbers which are in AP, still these numbers will be in AP.
Now, subtract 1 from all these three numbers.
$\Rightarrow\dfrac{{a + b + c}}{a} - 1$, $\dfrac{{a + b + c}}{b} - 1$, $\dfrac{{a + b + c}}{c} - 1$, now simplify the numbers.
$\Rightarrow \dfrac{{a + b + c}}{a} - 1 = \dfrac{{a + b + c - a}}{a} = \dfrac{{b + c}}{a}$, $\dfrac{{a + b + c}}{b} - 1 = \dfrac{{a + b + c - b}}{b} = \dfrac{{a + c}}{b}$, $\dfrac{{a + b + c}}{c} - 1 = \dfrac{{a + b + c - c}}{c} = \dfrac{{a + b}}{c}$
Therefore, $\dfrac{{b + c}}{a}$, $\dfrac{{a + c}}{b}$, $\dfrac{{a + b}}{c}$ are in AP.
Note:
An arithmetic progression or arithmetic sequence the numbers are in such a sequence that the difference between consecutive numbers are the same.
Whenever we add or subtract any particular number with the numbers which are in AP, will still be in AP.
Whenever we multiply or divide any particular number with the numbers which are in AP, will still be in AP.The numbers in an AP differ by common difference among them.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE