Answer
Verified
462.6k+ views
Hint: The formula to find the number of types of orbitals present in the atom is $\dfrac{{(n + 2)}}{2}$ . This formula is applicable only when the value of n is even. ‘n’ is the principal quantum number here.
Complete step by step solution:
Here, we are given to expect that each orbital has a capacity to fill three electrons. In that way, we need to calculate the number of elements in the second period of the periodic table.
- Let’s find the number of orbitals present in an element in the case where n is given. Here, ‘n’ is the principal quantum number.
So, in the second period of the periodic table, the principal quantum number of all the elements will be 2. So, number of orbitals present in all the elements will be$\dfrac{{(n + 2)}}{2} = \dfrac{{(2 + 2)}}{{}} = \dfrac{4}{2} = 2$
- So, we know that the two types of orbitals will be ‘s’ and ‘p’ orbitals.
- Now, we know that s has one orbital and p has three orbitals. We are given that each orbital has the ability to include three electrons.
- So, S orbital can have $3 \times 1 = 3$ electrons and p orbitals will have$3 \times 3 = 9$ electrons. So, total number of electrons in both the types of orbitals will be 12.
- So, we can say that the second shell will have the capacity to have 12 electrons. So, as the capacity of 12 electrons is there, there will be 12 different electronic configurations available and hence the number of elements in the period will be 12.
- Thus, we can say that if an orbital could hold a maximum of 3 electrons, then there would be a total 12 elements in the second period of the periodic table.
So, the correct answer is (D).
Note: Note that as we are told to give the number of elements in the second period only, we need not to take any other shell into consideration except the second shell. If we add the electrons of other shells also, then there will be error in calculation.
Complete step by step solution:
Here, we are given to expect that each orbital has a capacity to fill three electrons. In that way, we need to calculate the number of elements in the second period of the periodic table.
- Let’s find the number of orbitals present in an element in the case where n is given. Here, ‘n’ is the principal quantum number.
So, in the second period of the periodic table, the principal quantum number of all the elements will be 2. So, number of orbitals present in all the elements will be$\dfrac{{(n + 2)}}{2} = \dfrac{{(2 + 2)}}{{}} = \dfrac{4}{2} = 2$
- So, we know that the two types of orbitals will be ‘s’ and ‘p’ orbitals.
- Now, we know that s has one orbital and p has three orbitals. We are given that each orbital has the ability to include three electrons.
- So, S orbital can have $3 \times 1 = 3$ electrons and p orbitals will have$3 \times 3 = 9$ electrons. So, total number of electrons in both the types of orbitals will be 12.
- So, we can say that the second shell will have the capacity to have 12 electrons. So, as the capacity of 12 electrons is there, there will be 12 different electronic configurations available and hence the number of elements in the period will be 12.
- Thus, we can say that if an orbital could hold a maximum of 3 electrons, then there would be a total 12 elements in the second period of the periodic table.
So, the correct answer is (D).
Note: Note that as we are told to give the number of elements in the second period only, we need not to take any other shell into consideration except the second shell. If we add the electrons of other shells also, then there will be error in calculation.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE