Answer
Verified
450.9k+ views
Hint: The dimensional formulae are derived using the parameters mass, length and time. In this problem, we will derive the dimensional formula of the mass, length and the time using the dimensional formula of the energy, force and the linear momentum. So, we will be performing the reverse operation.
Complete step by step answer:
From given, we have the data,
The energy (E), force (F) and linear momentum (P) are fundamental quantities.
The dimensional formula of the energy is, \[\text{E}=[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]\]
The dimensional formula of the force is, \[\text{F}=[\text{ML}{{\text{T}}^{-2}}]\]
The dimensional formula of the linear momentum is, \[\text{p}=[\text{ML}{{\text{T}}^{-1}}]\]
Consider the given options one by one and substitute the dimensional formulae of the energy, force and linear momentum.
The first option given is, \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\],
The energy is raised to 0, force is raised to -1 and linear momentum is raised to 1.
So, we have,
\[\begin{align}
& [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{1}} \\
& \Rightarrow [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}][\text{ML}{{\text{T}}^{-1}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{1}}]\]
So, the dimensional formula of the first option represents the dimensional formula of time.
Similarly, compute the other two given options.
The second option given is, \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\],
The energy is raised to -1, force is raised to 0 and linear momentum is raised to 2.
So, we have,
\[\begin{align}
[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-1}}]}^{2}} \\
&\Rightarrow [{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{=1}}{{\text{L}}^{-2}}{{\text{T}}^{2}}][{{\text{M}}^{2}}{{\text{L}}^{2}}{{\text{T}}^{-2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{1}}{{\text{L}}^{0}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of mass.
Now compute the third option.
The third option given is, \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\],
The energy is raised to 1, force is raised to -1 and linear momentum is raised to 0.
So, we have,
\[\begin{align}
& [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{0}} \\
& \Rightarrow [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{1}}{{\text{L}}^{2}}{{\text{T}}^{-2}}][{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{0}}{{\text{L}}^{1}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of length.
Therefore, the dimensional formula of the mass is, \[[\text{M}]=[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the length is,\[[\text{L}]=[\text{E}{}^{-1}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the time is, \[[\text{T}]=[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]\]
If energy (E), force (F) and linear momentum (P) are fundamental quantities, then the correct match is a-e, b-f, c-d, thus, the option (C) is correct.
Note:
The things to be on your finger-tips for further information on solving these types of problems are: The units of the given parameters should be taken into consideration while solving the problem. The units are the source for computing the dimensional formulae.
Complete step by step answer:
From given, we have the data,
The energy (E), force (F) and linear momentum (P) are fundamental quantities.
The dimensional formula of the energy is, \[\text{E}=[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]\]
The dimensional formula of the force is, \[\text{F}=[\text{ML}{{\text{T}}^{-2}}]\]
The dimensional formula of the linear momentum is, \[\text{p}=[\text{ML}{{\text{T}}^{-1}}]\]
Consider the given options one by one and substitute the dimensional formulae of the energy, force and linear momentum.
The first option given is, \[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}\],
The energy is raised to 0, force is raised to -1 and linear momentum is raised to 1.
So, we have,
\[\begin{align}
& [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{1}} \\
& \Rightarrow [{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}][\text{ML}{{\text{T}}^{-1}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]=[{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{1}}]\]
So, the dimensional formula of the first option represents the dimensional formula of time.
Similarly, compute the other two given options.
The second option given is, \[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}\],
The energy is raised to -1, force is raised to 0 and linear momentum is raised to 2.
So, we have,
\[\begin{align}
[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{0}}{{[\text{ML}{{\text{T}}^{-1}}]}^{2}} \\
&\Rightarrow [{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{=1}}{{\text{L}}^{-2}}{{\text{T}}^{2}}][{{\text{M}}^{2}}{{\text{L}}^{2}}{{\text{T}}^{-2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]=[{{\text{M}}^{1}}{{\text{L}}^{0}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of mass.
Now compute the third option.
The third option given is, \[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}\],
The energy is raised to 1, force is raised to -1 and linear momentum is raised to 0.
So, we have,
\[\begin{align}
& [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]={{[\text{M}{{\text{L}}^{2}}{{\text{T}}^{-2}}]}^{1}}{{[\text{ML}{{\text{T}}^{-2}}]}^{-1}}{{[\text{ML}{{\text{T}}^{-1}}]}^{0}} \\
& \Rightarrow [{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{1}}{{\text{L}}^{2}}{{\text{T}}^{-2}}][{{\text{M}}^{-1}}{{\text{L}}^{-1}}{{\text{T}}^{2}}] \\
\end{align}\]
Therefore, upon further calculation, we get,
\[[{{\text{E}}^{1}}{{\text{F}}^{-1}}{{\text{p}}^{0}}]=[{{\text{M}}^{0}}{{\text{L}}^{1}}{{\text{T}}^{0}}]\]
So, the dimensional formula of the first option represents the dimensional formula of length.
Therefore, the dimensional formula of the mass is, \[[\text{M}]=[{{\text{E}}^{-1}}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the length is,\[[\text{L}]=[\text{E}{}^{-1}{{\text{F}}^{0}}{{\text{p}}^{2}}]\]
Therefore, the dimensional formula of the time is, \[[\text{T}]=[{{\text{E}}^{0}}{{\text{F}}^{-1}}{{\text{p}}^{1}}]\]
If energy (E), force (F) and linear momentum (P) are fundamental quantities, then the correct match is a-e, b-f, c-d, thus, the option (C) is correct.
Note:
The things to be on your finger-tips for further information on solving these types of problems are: The units of the given parameters should be taken into consideration while solving the problem. The units are the source for computing the dimensional formulae.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE