
If \[{{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}} = {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\], then \[{\text{y'}}\left( 0 \right)\] can be
A) $\dfrac{1}{{3\sqrt \pi }}$
B) $ - \dfrac{1}{{3\sqrt \pi }}$
C) $ - \dfrac{1}{{5\sqrt \pi }}$
D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Answer
582.9k+ views
Hint: This problem comes under implicit function on differentiation. We need to solve separately and want to differentiate on the function and want to find y and then there will be re arranging and substitute to the equation to compare the coordinates for the solving \[y'(0) = \dfrac{{dy}}{{dx}}\] which first order differentiation and there will be multiple solvable equation and then complete step by step explanation.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

