If \[{{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}} = {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\], then \[{\text{y'}}\left( 0 \right)\] can be
A) $\dfrac{1}{{3\sqrt \pi }}$
B) $ - \dfrac{1}{{3\sqrt \pi }}$
C) $ - \dfrac{1}{{5\sqrt \pi }}$
D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Answer
Verified
466.5k+ views
Hint: This problem comes under implicit function on differentiation. We need to solve separately and want to differentiate on the function and want to find y and then there will be re arranging and substitute to the equation to compare the coordinates for the solving \[y'(0) = \dfrac{{dy}}{{dx}}\] which first order differentiation and there will be multiple solvable equation and then complete step by step explanation.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Complete step-by-step answer:
\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\] \[{{\text{e}}^{\operatorname{Sin} ({x^2} + {y^2})}} = {\text{ tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x - - - - - - - - (1)\]
When \[x = 0\], then the inverse function will be zero and the values of \[x\] will be so, then we get
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}} = {\text{ tan }}\dfrac{{{y^2}}}{4}\]
Taking $\log $ on both sides,
\[ \Rightarrow \sin {y^2} = {\text{ log tan }}\dfrac{{{y^2}}}{4}\]
Hence we get,
\[y = \pm \sqrt x , \pm \sqrt {5x} ,..............\]
Now differentiating equation (1) with respect to x, we get
Let us solve separately Left hand side and Right hand side,
Now differentiate Left hand side
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\]
\[ \Rightarrow {{\text{e}}^{\sin \left( {{x^2} + {y^2}} \right)}}\cos \left( {{x^2} + {y^2}} \right)\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right)\]
Now differentiate Right hand side
\[ \Rightarrow {\text{tan }}\dfrac{{{y^2}}}{4} + {\sin ^{ - 1}}x\]
Differentiating we get,
\[ \Rightarrow \dfrac{{2y}}{4}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} + \dfrac{1}{{\sqrt {1 - {x^2}} }}\]
Now again substitute \[x = 0\] and compare,
\[ \Rightarrow {{\text{e}}^{\sin {y^2}}}\left[ {\cos {y^2}\left( {2y\dfrac{{dy}}{{dx}}} \right)} \right] = \dfrac{y}{2}{\sec ^2}\dfrac{{{y^2}}}{4}\dfrac{{dy}}{{dx}} - - - - (2)\]
Now substitute \[x\] value and \[y\] value in equation (2), we get \[y'(0) = \dfrac{{dy}}{{dx}}\]
Now, at \[x = 0\], \[y = \sqrt \pi \] in equation in (2),
\[ \Rightarrow {{\text{e}}^{\sin {{(\sqrt \pi )}^2}}}[\cos {(\sqrt \pi )^2}2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{{{{\sqrt \pi }^2}}}{4}\dfrac{{dy}}{{dx}}\]
Now separate \[\dfrac{{dy}}{{dx}}\],
\[ \Rightarrow {{\text{e}}^{\sin \pi }}[\cos \pi ]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}}\]
We know that \[\sin \pi = 0\] and \[\cos \pi = - 1\],
\[ \Rightarrow {{\text{e}}^0}[ - 1]2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2}{(\sec \dfrac{\pi }{4})^2}\dfrac{{dy}}{{dx}}\]
We know that \[{\sec ^2}\dfrac{\pi }{4}\dfrac{{dy}}{{dx}} = 2\] and \[{e^0} = 1\],
$ \Rightarrow - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \dfrac{{\sqrt \pi }}{2} \times 2\dfrac{{dy}}{{dx}}$
Cancelling the term $2$ in denominator and numerator,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} = \sqrt \pi \dfrac{{dy}}{{dx}}\]
Rearranging the terms we get,
$\Rightarrow$\[ - 2\sqrt \pi \dfrac{{dy}}{{dx}} - \sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Taking common term same as in both terms,
$\Rightarrow$\[( - 2\sqrt \pi - \sqrt \pi )\dfrac{{dy}}{{dx}} = 0\]
Subtracting the terms we get,
$\Rightarrow$\[ - 3\sqrt \pi \dfrac{{dy}}{{dx}} = 0\]
Hence we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{{3\sqrt \pi }}\]
Similarly we can find for when \[x = 0,y = - \sqrt \pi \] we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt \pi }}\]
Similarly we can find for when\[x = 0,y = \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = - \dfrac{1}{{3\sqrt {5\pi } }}\]
Similarly we can find for when \[x = 0,y = - \sqrt {5\pi } \], we get
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{3\sqrt {5\pi } }}\]
There will be multiple answers and for this question, these are,
$\Rightarrow$$\dfrac{1}{{3\sqrt \pi }}$, $ - \dfrac{1}{{3\sqrt \pi }}$ and $ - \dfrac{1}{{3\sqrt {5\pi } }}$
$\therefore $ The correct answers are option A) $\dfrac{1}{{3\sqrt \pi }}$, B) $ - \dfrac{1}{{3\sqrt \pi }}$ and D) $ - \dfrac{1}{{3\sqrt {5\pi } }}$
Note: This problem needs attention on differentiation and some trigonometric identities, this kind of problem will be able to solve when the when before differentiation and after differentiation for when find x values and y values for finding the first order differential and then simple basic calculation for that arrange and substitute the value in order to find solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE