Answer
Verified
449.7k+ views
Hint: Here, we need to find the value for the given expression. Using the given information, algebraic identities, rationalising, and the formula of a derivative of a function at a point, we will simplify the given expression and find the required value.
Formula used:
We will use the following formulas:
1.The product of the sum and difference of two numbers is given by the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
2.The derivative of a function \[f\left( x \right)\] at \[x = a\] is given by the formula \[f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\]. This can be written as \[f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\], where \[h = x - a\].
Complete step-by-step answer:
We will simplify the given expression with the limit to find its value.
Factoring out \[ - 1\] from the numerator and denominator of the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }}\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{ - 1\left[ {\sqrt {f\left( x \right)} - 3} \right]}}{{ - 1\left[ {\sqrt x - 3} \right]}}\]
Simplifying the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}}\]
Multiplying and dividing the expression by \[\sqrt x + 3\], we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt x + 3}}} \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right)\end{array}\]
Multiplying and dividing the expression by \[\sqrt {f\left( x \right)} + 3\], we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{{\sqrt {f\left( x \right)} + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{1}{{\sqrt {f\left( x \right)} + 3}}} \right)\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Substituting \[a = \sqrt x \] and \[b = 3\] in the identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[ \Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = {\left( {\sqrt x } \right)^2} - {3^2}\]
Applying the exponents on the terms, we get
\[ \Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9\]
Substituting \[a = \sqrt {f\left( x \right)} \] and \[b = 3\] in the identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[ \Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = {\left( {\sqrt {f\left( x \right)} } \right)^2} - {3^2}\]
Applying the exponents on the terms, we get
\[ \Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9\]
Substituting \[\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9\] and \[\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9\] in the equation \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - 9}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
It is given that \[f\left( 9 \right) = 9\].
Substituting \[9 = f\left( 9 \right)\] in the equation, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Rewriting the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
The derivative of a function \[f\left( x \right)\] at \[x = a\] is given by the formula \[f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\].
This can be written as \[f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\], where \[h = x - a\].
Therefore, the derivative of the function \[f\left( x \right)\] at \[x = 9\] can be written as \[f'\left( 9 \right) = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}}\].
Substituting \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} = f'\left( 9 \right)\] in the equation \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Applying the limit \[x = 9\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt {f\left( 9 \right)} + 3}}} \right)\]
Substituting \[f\left( 9 \right) = 9\] and \[f'\left( 9 \right) = 1\] in the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt 9 + 3}}} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( 1 \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1\end{array}\]
Therefore, the value of the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }}\] is 1.
Thus, the correct option is option (b).
Note: We rewrote the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\] as \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]. This is because an expression of the form \[\mathop {\lim }\limits_{x \to a} f\left( x \right)g\left( x \right)\] can be written as \[\mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)\]. As the solution is lengthy, we might make a mistake in substituting the values correctly and therefore we need to be careful while solving. We will apply the limit at the end and not in the start because it will incur the wrong result. For example, in this question if we put the limit in the start then it will be equal to 0, which is wrong.
Formula used:
We will use the following formulas:
1.The product of the sum and difference of two numbers is given by the algebraic identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\].
2.The derivative of a function \[f\left( x \right)\] at \[x = a\] is given by the formula \[f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\]. This can be written as \[f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\], where \[h = x - a\].
Complete step-by-step answer:
We will simplify the given expression with the limit to find its value.
Factoring out \[ - 1\] from the numerator and denominator of the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }}\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{ - 1\left[ {\sqrt {f\left( x \right)} - 3} \right]}}{{ - 1\left[ {\sqrt x - 3} \right]}}\]
Simplifying the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}}\]
Multiplying and dividing the expression by \[\sqrt x + 3\], we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\sqrt x - 3}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt x + 3}}} \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right)\end{array}\]
Multiplying and dividing the expression by \[\sqrt {f\left( x \right)} + 3\], we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\sqrt {f\left( x \right)} - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{{\sqrt {f\left( x \right)} + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\sqrt x + 3} \right) \times \left( {\dfrac{1}{{\sqrt {f\left( x \right)} + 3}}} \right)\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Substituting \[a = \sqrt x \] and \[b = 3\] in the identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[ \Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = {\left( {\sqrt x } \right)^2} - {3^2}\]
Applying the exponents on the terms, we get
\[ \Rightarrow \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9\]
Substituting \[a = \sqrt {f\left( x \right)} \] and \[b = 3\] in the identity \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[ \Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = {\left( {\sqrt {f\left( x \right)} } \right)^2} - {3^2}\]
Applying the exponents on the terms, we get
\[ \Rightarrow \left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9\]
Substituting \[\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) = x - 9\] and \[\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right) = f\left( x \right) - 9\] in the equation \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{\left( {\sqrt {f\left( x \right)} - 3} \right)\left( {\sqrt {f\left( x \right)} + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - 9}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
It is given that \[f\left( 9 \right) = 9\].
Substituting \[9 = f\left( 9 \right)\] in the equation, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Rewriting the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
The derivative of a function \[f\left( x \right)\] at \[x = a\] is given by the formula \[f'\left( a \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {a + h} \right) - f\left( a \right)}}{h}\].
This can be written as \[f'\left( a \right) = \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right) - f\left( a \right)}}{{x - a}}\], where \[h = x - a\].
Therefore, the derivative of the function \[f\left( x \right)\] at \[x = 9\] can be written as \[f'\left( 9 \right) = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}}\].
Substituting \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} = f'\left( 9 \right)\] in the equation \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = \mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]
Applying the limit \[x = 9\], we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = f'\left( 9 \right) \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt {f\left( 9 \right)} + 3}}} \right)\]
Substituting \[f\left( 9 \right) = 9\] and \[f'\left( 9 \right) = 1\] in the expression, we get
\[ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( {\dfrac{{\sqrt 9 + 3}}{{\sqrt 9 + 3}}} \right)\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1 \times \left( 1 \right)\\ \Rightarrow \mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }} = 1\end{array}\]
Therefore, the value of the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{3 - \sqrt {f\left( x \right)} }}{{3 - \sqrt x }}\] is 1.
Thus, the correct option is option (b).
Note: We rewrote the expression \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\] as \[\mathop {\lim }\limits_{x \to 9} \dfrac{{f\left( x \right) - f\left( 9 \right)}}{{x - 9}} \times \mathop {\lim }\limits_{x \to 9} \left( {\dfrac{{\sqrt x + 3}}{{\sqrt {f\left( x \right)} + 3}}} \right)\]. This is because an expression of the form \[\mathop {\lim }\limits_{x \to a} f\left( x \right)g\left( x \right)\] can be written as \[\mathop {\lim }\limits_{x \to a} f\left( x \right) \times \mathop {\lim }\limits_{x \to a} g\left( x \right)\]. As the solution is lengthy, we might make a mistake in substituting the values correctly and therefore we need to be careful while solving. We will apply the limit at the end and not in the start because it will incur the wrong result. For example, in this question if we put the limit in the start then it will be equal to 0, which is wrong.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE